题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

Differential Equations (id: 442fcac00)

[复制链接]
admin 发表于 2024-8-3 01:21:10 | 显示全部楼层 |阅读模式
本题目来源于试卷: Differential Equations,类别为 IB数学

[问答题]
Consider the differential equam7hac/.gm d9cgux6 w vp0):i4fi b +jxl+*ihtqs)mvnr023secw d/ +q tion $ \frac{\mathrm{d} y}{\mathrm{~d} x}-(\tan x) y=1$ , where $x \neq \frac{(2 n+1) \pi}{2} $, for any integer n .
1. Given that y(0)=1 , use Euler's method with step length h=0.2 to find an approximation for y(1) . Give your answer correct to two decimal places.
2. Solve the equation $ \frac{\mathrm{d} y}{\mathrm{~d} x}-(\tan x) y=1 $. Give your answer in the form y=f(x) .
3. Find the percentage error when y(1) is approximated by the final rounded value found in part (a). Give your answer correct to two significant figures.
4. Show that the x -coordinate(s) of the points on the curve y=f(x) where $ \frac{\mathrm{d} y}{\mathrm{~d} x}=0 $ are of the form $x=\frac{1}{2}(4 \pi n-\pi)$ , where $ n \in \mathbb{Z}$ .




参考答案:









本题详细解析: 暂无

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-11-20 14:05 , Processed in 0.055870 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表