题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

Differential Equations (id: 383e595bc)

[复制链接]
admin 发表于 2024-8-3 01:27:04 | 显示全部楼层 |阅读模式
本题目来源于试卷: Differential Equations,类别为 IB数学

[问答题]
The population P of fish in a /4x,)m 5d2fqxq*d2jmo yap ap lake aft nut/ls-ist -fx5pgk, d 5e)(ler t weeks can be modelled by the differential l5 i5l -(sgtx- feksndpt ),/uequation.

$\frac{\mathrm{d} P}{\mathrm{~d} t}=k \sqrt{P}, \quad k, t>0$

1. Show that the population of fish is given by

$P(t)=\left(\frac{k t}{2}+\sqrt{P_{0}}\right)^{2}, \quad t>0$

where $ P_{0}$ is the initial fish population.
It is known that the initial fish population was 3000 , and that 24 weeks later the population had doubled in size.
2. Find the value of k to three significant figures.
3. Estimate the number of fish after 30 weeks to the nearest integer.

After a careful adjustment it is found that the model that best describes the fish population is given by

$\frac{\mathrm{d} P_{2}}{\mathrm{~d} t}=(1.89+3 \cos (0.2 \pi t)) \sqrt{P_{2}}$

where t is the time measured in weeks, $t \geq 0 $.
4. Verify that $ P_{2}=\left(\frac{1.89 t}{2}+\frac{30 \sin (0.2 \pi t)}{4 \pi}+\sqrt{3000}\right)^{2} $ is the solution of this new differential equation.
5. Sketch the graph of P_{2}(t) and the graph of P(t) found in parts (a) and (b) on the same axes, for $ 0 \leq t \leq 50 $.
6. Use $ P_{2}(t) $ to estimate the number of whole weeks it takes for the population to reach 5000 fish.




参考答案:








本题详细解析: 暂无

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-11-20 14:45 , Processed in 0.041644 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表