[填空题]
A discrete dynamical system is vq8 l; jeqtp-u;n7co *described by the following transition m6(9gzyme 3a oh2auv5qpo h5o.atrix, T,
qo h2 .h5ma5(9ov63ypez ou ag $ T = \begin{vmatrix} 0.3 & 0.8 \\ 0.7 & 0.2 \end{vmatrix} $
The state of the system is defined by the proportions of population with a particular characteristic.
1.Use the characteristic polynomial of T to find its eigenvalues.
2.Find the corresponding eigenvectors of T.
Hence we get $ X_1 = \begin{vmatrix} -x \\ y \end{vmatrix} $
Hence we get $ X_2 = \begin{vmatrix} a \\ b \end{vmatrix} $
x= ,y= ; a= ,b= .
3.Hence find the steady state matrix s of the system.
$ S = \begin{vmatrix} x \\ y \end{vmatrix} $
x= ,y= .