题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

IB MAI HL Calculus Topic 5.1 Differentiation (id: 6106ed9c6)

[复制链接]
admin 发表于 2024-3-5 20:50:37 | 显示全部楼层 |阅读模式
本题目来源于试卷: IB MAI HL Calculus Topic 5.1 Differentiation,类别为 IB数学

[填空题]
The equation of a cua,d31jho4o yp rve is k1m* cq+ie/ d0tda blb(d5)uj y=-x$^3$ +4x$^2$ +x -4.A section of the curve is shown on the diagram below, with the three x-intercepts labelled.

1.Find $\frac{dy}{dx}$.
$\frac{dy}{dx}$=-ax$^2$ +bx +c ; a=  , b=   ,c=   .
2.Write down the coordinates of the local maximum.
the local maximum is located at (x, y) ; x(≈)=   , y(≈)=  .
3.Write down an integral representing the area of the shaded region.
its area is determined by A=$\int_{1}^{4}(-x^3+ax^2+x-b)dx$, a=  , b=  .
4.Find the area of the shaded region.
A=$\frac{a}{b}$, a=   , b=   .




参考答案:
空格1: 3空格2: 8空格3: 1空格4: 2.78±0.3空格5: 8.21±0.2空格6: 4空格7: 4空格8: 63空格9: 4


本题详细解析:

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-12-26 04:46 , Processed in 0.058937 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表