题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

IB MAI HL Calculus Topic 5.1 Differentiation (id: 61ebc0c46)

[复制链接]
admin 发表于 2024-3-5 20:50:37 | 显示全部楼层 |阅读模式
本题目来源于试卷: IB MAI HL Calculus Topic 5.1 Differentiation,类别为 IB数学

[填空题]
A particle P moves so (jqkd- 7,cjaaa m3wv2 that u4:c78 wby;euevugg7its velocity, in m s$^{−1}$ , at time t seconds can be described by the function
v(t)=2cost, where t≥0. The kinetic energy of the particle, in joules (J), is given by the function E(v)=3v$^2$ .

1.Find an expression for E as a function of time.
E(t)=a cos$^2$ t; a=  .
2.Hence, find E'(t)=-a cost sint; a=  .E'(t)=  

3.Hence or otherwise, find the first time at which the kinetic energy is changing at a rate of 4 J s$^{−1}$.
t=  s




参考答案:
空格1: 12空格2: 24空格3: 4空格4: 1.74


本题详细解析:

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-12-26 04:43 , Processed in 0.057718 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表