[填空题]
Consider the geometr(z . x5h3xiy n87yswgrf g.4fsic 5xst pvhhk: *nnnkl*47ua,( ,lk-ji t transformation
$\left(\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
3 & a \\
3 & b-3
\end{array}\right)\left(\begin{array}{l}
x \\
y
\end{array}\right)+\left(\begin{array}{c}
b \\
a-9
\end{array}\right) .$
that maps points from (x, y) to $\left(x^{\prime}, y^{\prime}\right)$ .
It is given that the transformation maps the point (4,-4) to the point (-4,-11) .
1. Show that a=6 and b=8 .
2. Given that the transformation maps the point (p, q) to itself, find the value of p and the value of q .
A rectangle R with vertices lying on the x y -plane undergoes this transformation. p = q =
3. Show that the area of the image is three times the size of R .