题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

IB MAI HL Calculus Topic 5.1 Differentiation (id: b67e21816)

[复制链接]
admin 发表于 2024-2-18 20:54:02 | 显示全部楼层 |阅读模式
本题目来源于试卷: IB MAI HL Calculus Topic 5.1 Differentiation,类别为 IB数学

[填空题]
A small population of ra +w-boro5kxbk9 mx1/a bbits in a0 d0eii2c4+ph tzmf6a forest is observed. After t weeks the population is modet0a zp6 dhc40i+em2f illed by

$P(t)=\frac{15000}{1+50 e^{-0.6 t}}, \text { where } 0 \leq t \leq 30$.

1. Find $P^{\prime}(t)$=$\frac{ae^{-0.6t}}{\left(1+50 e^{-0.6 t}\right)^{2}}$. a=  .
2. Find the rate at which the population is increasing after 10 weeks.$p^'(10)$≈  .
3. Determine the time(s) at which the population is increasing at 1860 rabbits per week. Round your answer(s) to the nearest integer.
4. During which week does the rate at which the population is increasing reach its maximum.




参考答案:
空格1: 450000空格2: 883


本题详细解析:

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-12-26 04:35 , Processed in 0.059014 second(s), 29 queries , Redis On.

搜索
快速回复 返回顶部 返回列表