题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

IB MAI HL Calculus Topic 5.1 Differentiation (id: 3b32bab39)

[复制链接]
admin 发表于 2024-2-18 21:08:54 | 显示全部楼层 |阅读模式
本题目来源于试卷: IB MAI HL Calculus Topic 5.1 Differentiation,类别为 IB数学

[填空题]
Let $f(x)=x^{3}+3 x^{2}-9 x+k$. Part of the graph of f is shown below. The graph of f has a local maximum at A, a local minimum at B and a point of inflection at C.

1.1. Find $f^{\prime}(x)$ =a$x^2$+bx-c;a=  ,b=  ,c=  .
1.2. Find $f^{\prime \prime}(x)$ =ax+b;a=  ,b=  .
2. Find the x -coordinate of the point of inflection at C.
x=-  .
Given that f(-1)=14 .
3.1. Find f(0) =   .
3.2.Hence, find the coordinates of the local maximum A(x,y) and justify your answer.
A(-  ,  )
4.Write down in order from least to greatest f$^{\prime \prime}$(B),f$^{\prime}$(B),f(B).




参考答案:
空格1: 3空格2: 6空格3: 9空格4: 6空格5: 6空格6: 1空格7: 3空格8: 3空格9: 30


本题详细解析:

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-12-26 04:09 , Processed in 0.060498 second(s), 29 queries , Redis On.

搜索
快速回复 返回顶部 返回列表