[填空题]
WaveRunner X leaves froo nkx-3y1gyfl :nnt-2xz:.z ilvre;a xb*+ nc w i4nea9-m.t5m $\mathrm{A}$(-265,141) and travels with velocity vector 10 $\mathbf{i}-4 \mathbf{j}$ . At the same time, WaveRunner $\mathrm{Y} $ leaves from $\mathrm{B}$(-180,-103) and travels at 19.5 $\mathrm{~m} \mathrm{~s}{ }^{-1} $ in the direction $5 \mathbf{i}+12 \mathbf{j} $. Times and distances are measured in seconds and metres respectively.
1. Determine if the two WaveRunners are travelling perpendicular to each other.
2. Find, in terms of $\mathbf{i}$ and $\mathbf{j}$ , the :
(1) velocity vector of WaveRunner Y . $\mathbf{v}_{\mathrm{Y}}=a \mathbf{i}+b \mathbf{j} $ a = b =
(2) position vector of WaveRunner $\mathrm{Y}$ after t seconds, $t \geq$ 0 .
3. Find the point at which the paths of the WaveRunners intersect.(a,b) a= b=
4. Calculate the distance between WaveRunners X and Y when WaveRunner X passes through the intersection point. m
5. Find the time, in seconds, when WaveRunner X is closest to WaveRunner Y's starting point. ≈ seconds