[填空题]
Jack is a student pilot flying a Cessna 172 Skyhawk and his flight is beihr+s30* q:om55c cftscpkq w 3 v l.2w 8ooll8cqqyb54ng monitored by the air traffic control centre. The aircraft's position is given by c8.wbq8oll o lyqv452the coordinates ( x, y, z) , where x and y are the aircraft's displacement east and north of the airport, and z is the height of the aircraft above the ground. All displacements are given in kilometres.
The aircraft's velocity is given by the vector $\left(\begin{array}{c}-160 \\ -64 \\ -12\end{array}\right) \mathrm{km} \mathrm{h}^{-1}$ .
At 11 : 00 the air traffic control centre detects Jack's aircraft at a position 40 $\mathrm{~km}$ east and 16 $\mathrm{~km} $ north of the airport, and at a height of 4.5 $\mathrm{~km}$ . Let t be the length of time, in hours, from 11: 00 .
1. Write down a vector equation for the aircraft's displacement, $\mathbf{r}$ , in terms of t .
2. Given that Jack's aircraft continues to fly at the same velocity,
(1) verify that it will pass directly over the airport;$\mathbf{r}=\left(\begin{array}{c}
a \\
b \\
c
\end{array}\right)+t\left(\begin{array}{c}
d \\
e \\
f
\end{array}\right)$a = b = c = d = e = f =
(2) find the time at which this happens;
(3) calculate its height at this point. km
When Jack's aircraft is 3.3 $\mathrm{~km} $ above the ground, it continues to fly on the same bearing but adjusts the angle of descent so that it will land at the point $\mathrm{P}$(0,0,0) .
3. (1) Find the time at which the aircraft is 3.3 $\mathrm{~km}$ above the ground.
(2) Find the direct distance of the aircraft from the airport at this point. the vector $\left(\begin{array}{c}-160 \\ -64 \\ p\end{array}\right) \mathrm{km} \mathrm{h}^{-1}$ . ≈ km
4. Find the value of p .