[填空题]
The US Defense Force is testing a new drone,d;g+nn u*j.dztif0;x p6iha/kj 0nh. The drone is controlzo 2/)svv f )wm9s( mjo/3p5t9lnzt bjled by a remote ground control system. The drone's position is given by the coordinates ( x, y, z) , where x and y are the drone's displacement east and north of an airbase, and z is the height of the dr /mbv9 (jt 5vpf3mlwjs)too9 zsn)/z2one above the ground. All displacements are given in kilometres.
The drone's velocity is given by the vector $\left(\begin{array}{c}-80 \\ -240 \\ -15\end{array}\right) \mathrm{km} \mathrm{h}^{-1}$ .
At 15: 00 the remote ground control system detects the drone at a position 32 \mathrm{~km} east and 96 $\mathrm{~km}$ north of the airbase, and at a height of $8 \mathrm{~km}$ . Let t be the length of time, in hours, from 15: 00 .
1. Write down a vector equation for the drone's displacement, $\mathbf{r}$ , in terms of t .$\mathbf{r}=\left(\begin{array}{c}
a \\
b \\
c
\end{array}\right)+t\left(\begin{array}{c}
d \\
e \\
f
\end{array}\right)$a = b = c = d = e = f =
2. Given that the drone continues to fly at the same velocity,
(1) verify that it will pass directly over the airbase;
(2) find the time at which this happens;
(3) calculate its height at this point.
The drone continues to fly at the same velocity and descends to a height of 5 $\mathrm{~km}$ . km
3. Find the time at which this happens.
4. Calculate the direct distance of the drone from the airbase at this point.
After descending to a height of 5 $\mathrm{~km}$ , the drone continues to fly on the same bearing but adjusts the angle of descent so that it will land at the point Q(0,0,0) .
The drone's velocity, after the adjustment of the angle of descent, is given by
the vector $\left(\begin{array}{c}-80 \\ -240 \\ q\end{array}\right) \mathrm{km} \mathrm{h}^{-1} $. ≈ km
5. Find the value of q .