题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

IB MAI HL Calculus Topic 5.1 Differentiation (id: 79ae5bcd3)

[复制链接]
admin 发表于 2024-2-19 15:03:00 | 显示全部楼层 |阅读模式
本题目来源于试卷: IB MAI HL Calculus Topic 5.1 Differentiation,类别为 IB数学

[填空题]
Consider the function kr1wa 4qrk,ao7 7cx f:vxm73t u/ ey;l2loh+8f5xbq o$f(x)=-\frac{1}{3} x+\frac{a}{2 x^{2}}$ , where a is a constant and $x \neq 0 $.
1. Find $f^{\prime}(x)$ = -$\frac{1}{a_1}$-$\frac{a}{x^3}$;$a_1$=  .

The function f(x) has a local maximum at x=3 .
2. Show that a=-9 .
3. Find the y -coordinate of the local maximum of the function.f(x)=-$\frac{1}{3}$x-$\frac{b}{2x^2}$;b=  .
4. Sketch the graph of f(x) , for $-6 \leq x \leq 8$ and $ -6 \leq y \leq 2 $.
5. State the values of x for which f(x) is increasing,   .
6 . Find the x -intercept of the graph of the function f(x) .
7. Calculate $f^{\prime}(1)$ =$\frac{a}{b}$;a=  ,b=  .
8. Find the equation of the normal to the graph of y=f(x) at x=1 .




参考答案:
空格1: 3空格2: 9空格3: 0空格4: 3空格5: 26空格6: 3


本题详细解析:

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-12-26 03:53 , Processed in 0.054356 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表