[填空题]
Consider the functio -m7 .p 9eev8cbwvb8upi0 vbiiom) -aa6e02x en $f(x)=\frac{2}{x^{2}}-ax$ , where a is a constant and $x \neq 0$.
1. Find $f^{\prime}(x)$ .
The function f(x) has a local minimum at x=-2 .${f'}^x$=-a-$\frac{a_1}{x^{b_1}}$;$a_1$= ,$b_1$= .
2. Show that $a=\frac{1}{2}$.
3 . Find the y -coordinate of the local minimum of the function.
4. Sketch the graph of f(x) , for $-5 \leq x \leq 6$ and $-3 \leq y \leq 6$ .
5. State the values of x for which f(x) is increasing.
6 . Find the x -intercept of the graph of the function f(x) .
7. Calculate $f^{\prime}(2)$=- .
8. Find the equation of the normal to the graph of y=f(x) at x=2 .
y=x-$\frac{a}{b}$,a= ,b= .