题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

IB MAI HL Calculus Topic 5.1 Differentiation (id: fae26219b)

[复制链接]
admin 发表于 2024-2-24 23:35:19 | 显示全部楼层 |阅读模式
本题目来源于试卷: IB MAI HL Calculus Topic 5.1 Differentiation,类别为 IB数学

[填空题]
Olivia designs a logo for a mountain campqqixr8;ys8 q* 2 ivci;ing club. The logo is i(znnqqe i/ q6;8pbu+u n the shape of a right-angled triangle, ABC, which represents a mountain. A rectangular sectiuq ;p8 z qn/n+q6iube(on, ADEF, is inscribed inside the triangle to create a view of two smaller mountains. The lengths of BD, DE, EF and FC are p cm, 4 cm, 6 cm and q cm respectively.

The total area of the logo is $A \mathrm{~cm}^{2}$ .
1. 1. Find A in terms of p and q , giving your answer in the form A=a p+b q+c ;A=ap+bq+c;a=  ,b=  ,c=  .
2. Show that A=$\frac{48}{q}+3q+24$ .
2. Find $\frac{\mathrm{d} A}{\mathrm{~d} q}$=-$\frac{a}{q^b}$+c;a=  ,b=  ,c=   .

Olivia wishes to find the value of q that will minimize the area of the club logo.
3. 1. Write down an equation Olivia could solve to find this value of q .
2. Hence, or otherwise, find this value of q =  .




参考答案:
空格1: 2空格2: 3空格3: 24空格4: 48空格5: 2空格6: 3空格7: 4


本题详细解析:

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-12-26 04:48 , Processed in 0.058571 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表