题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

IB MAI HL Calculus Topic 5.1 Differentiation (id: c4876de49)

[复制链接]
admin 发表于 2024-2-27 21:35:03 | 显示全部楼层 |阅读模式
本题目来源于试卷: IB MAI HL Calculus Topic 5.1 Differentiation,类别为 IB数学

[填空题]
Charlotte decides toky;tvf-he o)f-0z6 zdvrsv6z -xx9:1/l lak koj;1n o build a storage box with an open top from a rectangular piece of cardboard, 45 cm by 24 cm. She removes squares with side length x cm from each corner, as shown in the following dilxsoovkrk1zva1x6;/l : - jn9 agram.

After the corner squares are removed, the remainder of the cardboard is folded up to form the storage box as shown in the following diagram.

1. Write down, in terms of x , the length and the width of the storage box.
l=a-bx;a=  ,b=  .
w=c-dx;c=  ,d=  .
2. 1. State whether x can have a value of 12 . Give a reason for your answer.
2. Write down the interval for the possible values of x .
3. Show that the volume, $V \mathrm{~cm}^{3}$ , of this storage box is given by

$V=4 x^{3}-138 x^{2}+1080 x$ .

4. Find $\frac{\mathrm{d} V}{\mathrm{~d} x}$ = $ax^3-bx^2+cx$ ; a=  ,b=  c=  .
5. Using your answer from part (d), find the value of x that maximizes the volume of the storage box.
x=  or x=  .
6. Calculate the maximum volume of the storage box.V=  $cm^3$
7. Sketch the graph of V for the possible values of x found in part (b)(ii), and $0 \leq V \leq 2500$ . Label the maximum point.




参考答案:
空格1: 45空格2: 2空格3: 24空格4: 2空格5: 4空格6: 138空格7: 1080空格8: 5空格9: 18空格10: 2450


本题详细解析:

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-12-26 04:40 , Processed in 0.051355 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表