题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

IB MAI HL Calculus Topic 5.1 Differentiation (id: 9e558a7dc)

[复制链接]
admin 发表于 2024-2-27 21:48:31 | 显示全部楼层 |阅读模式
本题目来源于试卷: IB MAI HL Calculus Topic 5.1 Differentiation,类别为 IB数学

[填空题]
Jeremy is making an openb h*g 0jc- qwz*rsv92vj(fh +h-top rectangulyob j3 ww,.jv -hdgxbc4x;f5*n2cu)l ar box as part of a science project. He makes the box from a rectangular piece of cardboard, 30 cm x 18 cm. To construct jl3 b,v)*g5cwb2h4nof ;y.-wdx jcuxthe box, Jeremy cuts off squares of side length x cm from each corner, as shown in the following diagram.

After removing the squares, Jeremy folds up the edges to form the box as shown.

1. Write down, in terms of x , expressions for the length and width of the box.
l=a-bx ;a=  ,b=  .
w=c-dx; c=  ,d=  .
2. 1. State whether x can have a value of 10 . Give a reason for your answer.
2. Write down the interval for the possible values of x .
3. Show that the volume, $V \mathrm{~cm}^{3}$ , of the box is given by

$V=4 x^{3}-96 x^{2}+540 x$ .

4. Find $\frac{\mathrm{d} V}{\mathrm{~d} x}$=ax^2-bx+c;a=  ,b=  ,c=   .
5. Using your answer from part (d), find the value of x that maximizes the volume of the box.
x≈  cm.
6. Calculate the maximum volume of the box.V≈  $cm^3$.
7. Sketch the graph of V , for the possible values of x found in part (b)(ii), and $0 \leq V \leq 1000$ . Label the maximum point.




参考答案:
空格1: 30空格2: 2空格3: 18空格4: 2空格5: 12空格6: 192空格7: 540空格8: 3.64±3%空格9: 887±3


本题详细解析:

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-12-26 04:50 , Processed in 0.063747 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表