[填空题]
The volume V of a cube in-i qgrypn wqk5+d 8)sogt1;x2 creases at a rate ot5 gf,uo yhw2 n+k)has4cb4.uf $4 \mathrm{~cm}^{3} \mathrm{sec}^{-1} $. Find the rate of change of the surface area of the cube, with respect to time t , at the instant when the volume of the cube is $8 \mathrm{~cm}^{3}$ .
the surface area is increasing at a rate of $\mathrm{~cm}^{2} / \mathrm{sec}$