题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

IB MAI HL Calculus Topic 5.1 Differentiation (id: a58b724c8)

[复制链接]
admin 发表于 2024-3-13 19:48:11 | 显示全部楼层 |阅读模式
本题目来源于试卷: IB MAI HL Calculus Topic 5.1 Differentiation,类别为 IB数学

本题为动态变量类型,下面题目描述与解答中出现的数值不同于您在作答时遇到的数值!

[填空题]
Engineers at a laborhcr +tm1 ;dw*bj9f w/z 6jqws6 ;pu 7dl6b6lajfd/* xiatory are designing a new type of gas storage container. The design consists of a cone with radius and vertical height r, on top o/i7 d ;fu6xlapbl dj6*f a cylinder with length ℓ, where r and ℓ are measured in meters. A diagram of the container is shown below.

1. Find an expression for the volume, V , of the container, in terms of r, $\ell and \pi$ .
V=$\frac{{\pi}r^a}{b}$+ℓ$\pi$$r^2$;a=  ,b=  .
2. Find an expression for the surface area of the container, A , in terms of r, $\ell$ and $\pi$ .
A=$({\sqrt{2}}+a)$$\pi$$r^2$+b$\pi$rℓ;a=  ,b=  .
3. Given the design constraint $\ell=\frac{10-2 \pi r^{2}}{\pi r} $, show that V=$10 r-\frac{5 \pi r^{3}}{3}$ .
V=ar-$\frac{b\pi r^3}{3}$;a=  ,b=  .
4. Find $ \frac{\mathrm{d} V}{\mathrm{~d} r}$ .
$\frac{dV}{dr}$=a-b$\pi$$r^2$;a=  ,b=  .
The engineers aim to maximise the volume of the container for the given design constraints.
5. Using your answer to part (d), show that V is a maximum when $r=\sqrt{\frac{2}{\pi}} $
r=$\sqrt{\frac{a}{\pi}} \mathrm{m}$;a=  .
6. Find the length of the cylinder, $ \ell $, for which V is a maximum.
7. Calculate the maximum volume, V , of the container.




参考答案:
空格1: 3空格2: 3空格3: 1空格4: 2空格5: 10空格6: 5空格7: 10空格8: 5空格9: 2


本题详细解析:

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-12-26 03:58 , Processed in 0.042312 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表