题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

IB MAI HL Calculus Topic 5.1 Differentiation (id: b0cd949d2)

[复制链接]
admin 发表于 2024-3-13 22:43:22 | 显示全部楼层 |阅读模式
本题目来源于试卷: IB MAI HL Calculus Topic 5.1 Differentiation,类别为 IB数学

[填空题]
A conical tank is beinii *s5u*:bt m7q m.bbag filled with water. T82jj*lfc yt,gnp9 6 s7i:cz+y6v ghidhe dimensions of the tank are shown in t9 jc8fd+piyvlijc6y s gn6 h*:27ztg,he following diagram.

1.Show that an expression for the volume, V, in the tank in terms of the water level height, h, is

$V=\frac{\pi h^{3}}{27}$

2. The tank is being filled at a rate of 1 $\mathrm{~m}^{3} \mathrm{~min}^{-1}$ . Find the rate of change of the water height h at the instant when the water level is 2 $\mathrm{~m}$ high.
the water level height is rising at a rate of    m/min(Omit to three decimal places)





参考答案: 0.716±0.003


本题详细解析:

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2025-1-13 11:08 , Processed in 0.060360 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表