题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

IB MAI HL Calculus Topic 5.1 Differentiation (id: b838f5e64)

[复制链接]
admin 发表于 2024-3-13 22:51:13 | 显示全部楼层 |阅读模式
本题目来源于试卷: IB MAI HL Calculus Topic 5.1 Differentiation,类别为 IB数学

[填空题]
A company that manufaf+6h1m// lms t.ups yactures a9.b* zg:z)rhyqj;g zfnd sells cardboard boxes has a box with an open-top design. This box is constructed from a rectangular cardboard sheet with a length of 2 meters and a zq:jf ;brz)9hzy. *gg width of 1.2 meters, as illustrated in the diagram below. The box is formed by cutting squares of equal side length (x meters) from each corner and folding up the sides.

1. Show that the volume of the box can be described by the function $V(x)=4 x^{3}-6.4 x^{2}+2.4 x$ .
2. 1. Find $V^{\prime}(x)$= a$x^3$ - bx + c; a=  ,b=  ,c=  .
2. Hence or otherwise, find the value for x that maximises the volume of the box;x=  m
3. Hence, find the maximum volume of the box.
3. Sketch the graph of V(x) on the axes below for the domain 0
4. 1. Write down an integral representing the area between the graph of V(x) and the x -axis;
2. Hence, find this area between the graph of V(x) and the x -axis.

Let A(x) be a function representing the outside surface area of the box.
5. Determine the function A(x) =-a$x^2$ + b ;a=  ,b=   .
6. Given that the volume of the box is maximised, find the outside surface area of the box.




参考答案:
空格1: 12空格2: 12.8空格3: 2.4空格4: 0.243空格5: 4空格6: 2.4


本题详细解析:

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-12-26 04:04 , Processed in 0.050052 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表