[填空题]
Consider the function definf11) wfll6k j2bvo gt.e)gry h69 vxzzub; w2m,d by $f(x)=(1-x) \sqrt{2 x-x^{2}}$ where $0 \leq x \leq 2$ .
1. Show that $f(1-x)=-f(1+x)$ , for $-1 \leq x \leq 1$ .
2. Find $f^{\prime}(x)$ = $\frac{ax^{2}-bx+c}{\sqrt{d x-x^{2}}}$; a= , b= , c= , d= .
3. Find the x -coordinates of any local minimum or maximum points.
4. Find the range of f is [- , ].
5. Sketch the graph of y=f(x) , indicating clearly the coordinates of the x -intercepts and any local maximum or minimum points.
6. Find the area of the region enclosed by the graph of y=f(x) on the x -axis, for $0\leq x \leq1$.
A=$\frac{a}{b}$; a= , b= .