题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

IB MAI HL Calculus Topic 5.1 Differentiation (id: d70853698)

[复制链接]
admin 发表于 2024-3-13 23:27:51 | 显示全部楼层 |阅读模式
本题目来源于试卷: IB MAI HL Calculus Topic 5.1 Differentiation,类别为 IB数学

[填空题]
Consider the function definf11) wfll6k j2bvo gt.e)gry h69 vxzzub; w2m,d by $f(x)=(1-x) \sqrt{2 x-x^{2}}$ where $0 \leq x \leq 2$ .
1. Show that $f(1-x)=-f(1+x)$ , for $-1 \leq x \leq 1$ .
2. Find $f^{\prime}(x)$ = $\frac{ax^{2}-bx+c}{\sqrt{d x-x^{2}}}$; a=   , b=  , c=   , d=   .
3. Find the x -coordinates of any local minimum or maximum points.
4. Find the range of f is [-   ,   ].
5. Sketch the graph of y=f(x) , indicating clearly the coordinates of the x -intercepts and any local maximum or minimum points.
6. Find the area of the region enclosed by the graph of y=f(x) on the x -axis, for $0\leq x \leq1$.
A=$\frac{a}{b}$; a=   , b=  .




参考答案:
空格1: 2空格2: 4空格3: 1空格4: 2空格5: 0.5空格6: 0.5空格7: 1空格8: 3


本题详细解析:

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-12-26 04:24 , Processed in 0.059175 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表