题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

IB MAI HL Calculus Topic 5.2 Integration (id: 5730cce9a)

[复制链接]
admin 发表于 2024-3-22 13:58:35 | 显示全部楼层 |阅读模式
本题目来源于试卷: IB MAI HL Calculus Topic 5.2 Integration,类别为 IB数学

[填空题]
A company that manufactures and serh5 z 6j*db7holz1m kfh 63wic+0qdal5o/gt4 h -iw uo9ls cardboard boxes has a box with an open-top1ho04gfk 3dw iil tam6/w zoqu9-c5h+ design. This box is constructed from a rectangular cardboard sheet with a length of 2 meters and a width of 1.2 meters, as illustrated in the diagram below. The box is formed by cutting squares of equal side length ( x meters) from each corner and folding up the sides.

1. Show that the volume of the box can be described by the function $V(x)= 4 x^{3}-6.4 x^{2}+2.4 x $.

2. 1. Find $V^{\prime}(x)$= ax$^2$-bx+c;a=  ,b=  .c=  .
2. Hence or otherwise, find the value for x that maximises the volume of the box;
x=   m
3. Hence, find the maximum volume of the box.

3. Sketch the graph of V(x) on the axes below for the domain 0
4. 1. Write down an integral representing the area between the graph of V(x) and the x -axis;
2. Hence, find this area between the graph of V(x) and the x -axis.

Let A(x) be a function representing the outside surface area of the box.
5. Determine the function A(x) .
A(x)=-ax$^2$+b;a=  ,b=  .
6. Given that the volume of the box is maximised, find the outside surface area of the box.




参考答案:
空格1: 12空格2: 12.8空格3: 2.4空格4: 0.243空格5: 4空格6: 2.4


本题详细解析:

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-12-26 03:34 , Processed in 0.049782 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表