[填空题]
All lengths in this quesuaa+(7oem fa r w2bo)4tion a* 1 : j *w6knvbrcezw7mke:on1re in metres.
Consider the function $f(x)=\sqrt{\frac{16-4 x^{2}}{7}}$ , for $-2 \leq x \leq 2 $. In the following diagram, the shaded region is enclosed by the graph of f and the x -axis.
A rainwater collection tank can be modelled by revolving this region by $360^{\circ}$ about the x -axis.
1. Find the volume of the tank.
V= m$^3$
Rainwater in the tank is used for drinking, cooking, bathing and other needs during the week.
The volume of rainwater in the tank is given by the function g(t) , for $ 0 \leq t \leq 7$ , where t is measured in days and g(t) is measured in $\mathrm{m}^{3}$ . The rate of change of the volume of rainwater in the tank is given by $g^{\prime}(t)=1.5-4 \cos \left(0.12 t^{2}\right)$ .
2. The volume of rainwater in the tank is increasing only when a 1. Find the value of a and the value of b .
2. During the interval a d= m$^3$
When t=0 , the volume of rainwater in the tank is 8.2 $\mathrm{~m}^{3}$ . It is known that the tank is never completely full of rainwater during the 7 day period.
3. Find the minimum volume of empty space in the tank during the 7 day period.