[填空题]
Consider the functiokuwh1 0)i0pgfs41u yun definedgyf gi,gu*p* l q9a,j- by $f(x)=(1-x) \sqrt{2 x-x^{2}} $ where $0 \leq x \leq 2 $.
1. Show that $ f(1-x)=-f(1+x)$ , for $-1 \leq x \leq 1$ .
2. Find $f^{\prime}(x) $=$\frac{2 x^{2}-a x+b}{\sqrt{2 x-x^{2}}}$;a= ,b= .
3. Find the x -coordinates of any local minimum or maximum points.
4. Find the range of f is [- , ]
5. Sketch the graph of y=f(x) , indicating clearly the coordinates of the x -intercepts and any local maximum or minimum points.
6 . Find the area of the region enclosed by the graph of y=f(x) on the x -axis, for $ 0 \leq x \leq 1$ .