题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

IB MAI HL Calculus Topic 5.2 Integration (id: 0efb4e0fb)

[复制链接]
admin 发表于 2024-3-22 14:34:12 | 显示全部楼层 |阅读模式
本题目来源于试卷: IB MAI HL Calculus Topic 5.2 Integration,类别为 IB数学

[填空题]
Water is flowing out of a ta2gk813rn vpv qfc;;vmnk at a rate6w.3v( eur hx54uq2ij-ik; lf8hk.rhetx i3z modelled by the function

$R^{\prime}(t)=4 \sin \left(\frac{t}{100}\right)$


Water is flowing into the same tank at a rate modelled by the function

$S^{\prime}(t)=\frac{12 t^{2}}{1+t^{3}}$


Both R^{\prime} and S^{\prime} are measured in $\mathrm{m}^{3}$ , and t in hours for $ 0 \leq t \leq 10$ .
1. Find the interval on which the amount of water in the tank is increasing.

2. Find an expression, T , for the amount of water in the tank at time t if initially there was 25 $\mathrm{~m}^{3}$ of water in the tank.
T(t)=4$\ln \left(t^{3}+1\right)$+400 $\cos \left(\frac{t}{100}\right)$-a; a=  .
3. Hence, or otherwise, find the value of the maximum amount of water in the tank and the time it occurs.




参考答案: 375


本题详细解析:

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-12-26 03:29 , Processed in 0.063911 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表