题库网 (tiku.one)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

IB MAI HL Calculus Topic 5.4 Differential Equations (id: c05b79d95)

[复制链接]
admin 发表于 2024-3-22 17:36:04 | 显示全部楼层 |阅读模式
本题目来源于试卷: IB MAI HL Calculus Topic 5.4 Differential Equations,类别为 IB数学

[填空题]
A water tank in the t1y mo6 osoi25smzh3k(+eud- *cmmece 1l5 ed2 hape of a rectangular prism has height 4$ \mathrm{~m}$ and a base of 3 $\mathrm{~m} \times 2 \mathrm{~m}$ . Water flows out of a tap at the bottom of the tank at a rate proportional to the square root of the depth of the water at any given time. Let h denote the depth of the water, in metres, and V is the volume of the water remaining in the tank after t minutes.
1. Write down a differential equation for the rate of change of volume of water in terms of time.


2. Show that the volume of water in the tank is given by V=6 $\mathrm{~h} \mathrm{~m}^{3}$ at time t .
V=  h.
3. Hence, or otherwise, show that a differential equation for the rate of change of water height in terms of time is

$\frac{\mathrm{d} h}{\mathrm{~d} t}$=-$\frac{k \sqrt{h}}{6}$

4. Given that the tank is initially full, and the height then drops 3 $\mathrm{~m} $ after 48 minutes, solve the differential equation in part (c).
h=$\left(a-\frac{t}{b}\right)^{2}$;a=  ,b=  .
5. Find the time it takes for the tank to empty.
t=  minutes.




参考答案:
空格1: 6空格2: 2空格3: 48空格4: 96


本题详细解析:

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

GMT+8, 2024-12-26 03:27 , Processed in 0.060384 second(s), 28 queries , Redis On.

搜索
快速回复 返回顶部 返回列表