题库网 (tiku.one)

 找回密码
 立即注册

 

      

上传图片附件

未使用图片

小贴士: 允许的图片文件格式为: gif, jpg, jpeg, png, webp,上传完成后会在上方生成预览,用鼠标连续双击缩略图,或拖动缩略图,该图片就被绑定至本题,显示在题目下方

本次作答已使用

小贴士: 此栏目显示的是当前作答使用的所有图片,绑定到某一题目的图片同时会显示在该题目下方; 删除使用的图片会将其转移到<未使用图片>类别


习题练习:Proofs  Proofs 



 作者: admin发布日期: 2024-06-04 15:43   总分: 20分  得分: _____________

答题人: 匿名未登录  开始时间: 24年06月04日 15:43  切换到: 整卷模式

标记此题
1#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Consider two consecutive pi .;)s l+ eyyy wr*pm0sjc;st2ositive integers, k and k+1 .
Show that the difference of their squares is equal to the sum of the two integers.
参考答案:     查看本题详细解析

标记此题
2#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Prove that the sum of three consecutive positive integers 3)q.jdsklv5 bbp ) 3nc// w-n 9dmqyi:tadj/his divisible by 3 .
参考答案:    

标记此题
3#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Prove that the sum of thre f2.xy7isz n): wtk9kce consecutive positive integers is divisible by 3 .
参考答案:    

标记此题
4#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The product of three consecutive integers is increap6 8m lojpi0g14jf)k1ag /jqz sed by the middle integer. Prove thatg4)gqj aji1l8oz k f061mpjp / the result is a perfect cube.
参考答案:    

标记此题
5#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
1. Show that (2n1)3+(2n+1)3=16n3+12n for nZ .
2. Hence, or otherwise, prove that the sum of the cubes of any two consecutive odd integers is divisible by four.
参考答案:    

标记此题
6#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Using mathematical induction, prove that 0m:+1 t.hpndo *qiy gk12+22++n2=n(n+1)(2n+1)6 for all nZ+.
参考答案:     查看本题详细解析

标记此题
7#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let rR,r1 . Use the method of mathematical induction to prove that
1+r+r2++rn=1rn+11r for all nZ+ .
参考答案:     查看本题详细解析

标记此题
8#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Using the method of proof by contradiction, pn(5v298t lb .7ja88le7qqazhngug 2cv v b p0hrove that 3 is irrational.
参考答案:    

标记此题
9#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The Fibonacci sequence flfur)z;y+;ds4v y3 gis defined as follows:

a0=0,a1=1,a2=1an=an1+an2 for n2.(FS)

Prove by mathematical induction that a12+a22++an2=anan+1 , where nZ+ .
参考答案:    

标记此题
10#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Prove by contradiction that td 0zf/b (/v n*j1sshavhe equation 3x37x2+5=0 has no integer roots.
参考答案:    

标记此题
11#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let y=x2ex , for xR .
1. Find fracdy dx .
2. Prove by mathematical induction that

dn dxn(x2ex)=(n(n1)+2nx+x2)ex for all nZ+,n2
参考答案:     查看本题详细解析

标记此题
12#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let f(x)=(x+1)e2x, xR .
1. Find f(x) .
2. Prove by induction that dnf dxn=[n(2)n1+(2)n(x+1)]e2xforallnZ+ .
参考答案:     查看本题详细解析

标记此题
13#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Using the principle of mathematical induction, p,yv+pr; bm5grrove that n(n2+5) is divisible by 6 \ for all integers n1 .
参考答案:     查看本题详细解析

标记此题
14#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
1. Solve the inequalid hsrw37w k75sty x22x+3.
2. Use mathematical induction to prove that 2n>n22 for all nZ+, n3 .
参考答案:     查看本题详细解析

标记此题
15#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
1. Show that 12n+1<n+1n , where Z, n0 .
2. Hence show that 12<222 .
3. Prove by mathematical induction that

r=2n1r<2n2 for all nZ+,n2
参考答案:     查看本题详细解析

标记此题
16#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
This question asks you to investigate some properties of hexagonal 9 u/ -m,bajef0efw 2dfnumbers. Hexagonaluefad /ejb09f,wm f-2 numbers can be represented by dots as shown below where hn denotes the n th hexagonal number, nN.



Note that 6 points are required to create the regular hexagon h2 with side of length 1 , while 15 points are required to create the next hexagon h3 with side of length 2 , and so on.
1. Write down the value of h5 .
2. By examining the pattern, show that hn+1=hn+4n+1,nN .
3. By expressing hn as a series, show that hn=2n2n,nN .
4. Hence, determine whether 2016 is a hexagonal number.
5. Find the least hexagonal number which is greater than 80000 .
6. Consider the statement:
45 is the only hexagonal number which is divisible by 9 .
Show that this statement is false.

Matt claims that given h1=1 and hn+1=hn+4n+1, n N , then

hn=2n2n,nN

7. Show, by mathematical induction, that Matt's claim is true for all n N .
参考答案:     查看本题详细解析

标记此题
17#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let f(x)=(x1)ex3 , for xR .
1. Find f(x) .
2. Prove by induction that dnf dxn=(3n+x13n)ex3 for all nZ+ .
3. Find the coordinates of any local maximum and minimum points on the graph of y=f(x) . Justify whether such point is a maximum or a minimum.
4. Find the coordinates of any points of inflexion on the graph of y=f(x) . Justify whether such point is a point of inflexion.
5. Hence sketch the graph of y=f(x) , indicating clearly the points found in parts (c) and (d) and any intercepts with the axes.
参考答案:     查看本题详细解析

标记此题
18#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
1. Use de Moivre's thknzdnpv(tg2k 2ab ,(2w ,ao*yeorem to find the value of [cos(π6)+isin(π6)]12 .
2. Use mathematical induction to prove that

(cosαisinα)n=cos(nα)isin(nα)for all nZ+.

Let w=cosα+isinα .
3. Find an expression in terms of α for wn(w)n, nZ+ , where w is the complex conjugate of w .
4. 1. Show that ww=1 .
2. Write down and simplify the binomial expansion of (ww)3 in terms of w and w .
3. Hence show that sin(3α)=3sinα4sin3α .
5. Hence solve 4sin3α+(2cosα3)sinα=0 for 0απ .
参考答案:     查看本题详细解析

标记此题
19#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let f(x)=11x,x<1.
1. Show that f(x)=34(1x)5/2 .
2. Use mathematical induction to prove that

f(n)(x)=(14)n(2n)!n!(1x)1/2nnZ, n2

Let g(x)=cos(mx),mQ.
Consider the function h defined by h(x)=f(x)×g(x) for x<1 .
The x2 term in the Maclaurin series for h(x) has a coefficient of 34.
3. Find the possible values of m .
参考答案:     查看本题详细解析

标记此题
20#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The following diagram shows the graph of l :0pimriow*5hc jz fs+ 88qoe 7-ew:j y=arctan(2x3)+3π4forxR , with asymptotes at y=π4andy=5π4 .



1. Describe a sequence of transformations that transforms the graph of y=arctanx to the graph of y=arctan(2x3)+3π4 for R.
2. Show that arctanparctanqarctan(pq1+pq).
3. Verify that arctan(x+2)arctan(x+1)=arctan(1(x+1)2+(x+1)+1) .
4. Using mathematical induction and the results from part (b) and (c), prove that

r=1narctan(1r2+r+1)=arctan(n+1)π4 for nZ+
参考答案:    

  • :
  • 总分:20分 及格:12分 时间:不限时
    未答题: 已答题:0 答错题:
    当前第 题,此次习题练习共有 20 道题
    本系统支持习题练习,作业与考试三大模式,作业考试自动评分,成绩排序一键导出,可设定动态变量同一试卷千人千题
    如果您对本系统感兴趣,想加入我们或者想进行任何形式的合作,请加微信 skysky1258

    浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

    GMT+8, 2025-4-9 03:39 , Processed in 0.099602 second(s), 61 queries , Redis On.