题库网 (tiku.one)

 找回密码
 立即注册

 

      

上传图片附件

未使用图片

小贴士: 允许的图片文件格式为: gif, jpg, jpeg, png, webp,上传完成后会在上方生成预览,用鼠标连续双击缩略图,或拖动缩略图,该图片就被绑定至本题,显示在题目下方

本次作答已使用

小贴士: 此栏目显示的是当前作答使用的所有图片,绑定到某一题目的图片同时会显示在该题目下方; 删除使用的图片会将其转移到<未使用图片>类别


习题练习:Proofs  Proofs 



 作者: admin发布日期: 2024-06-04 15:43   总分: 20分  得分: _____________

答题人: 匿名未登录  开始时间: 24年06月04日 15:43  切换到: 整卷模式

标记此题
1#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Consider two consecutive positivefi:+jur.i/b a integers, k and k+1 .
Show that the difference of their squares is equal to the sum of the two integers.
参考答案:     查看本题详细解析

标记此题
2#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Prove that the sum of th),x :btaeywk u3a cn) og6+ck:ree consecutive positive integers is divisible by 3 .
参考答案:    

标记此题
3#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Prove that the sum of thr, a:k4ohplw+w5y9w ,vu tp az:z43v y.jz;omuee consecutive positive integers is divisible by 3 .
参考答案:    

标记此题
4#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The product of three consecutive integers is increafabg;8d a e:4ssed by the middle integer. Prove that the resul8bs : aedg;4fat is a perfect cube.
参考答案:    

标记此题
5#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
1. Show that $(2 n-1)^{3}+(2 n+1)^{3}=16 n^{3}+12 n$ for $n \in \mathbb{Z}$ .
2. Hence, or otherwise, prove that the sum of the cubes of any two consecutive odd integers is divisible by four.
参考答案:    

标记此题
6#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Using mathematical induction, prove that n 9/p.yfz-cyv$ 1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$ for all $ n \in \mathbb{Z}^{+} $.
参考答案:     查看本题详细解析

标记此题
7#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $ r \in \mathbb{R}, r \neq $1 . Use the method of mathematical induction to prove that
$1+r+r^{2}+\cdots+r^{n}=\frac{1-r^{n+1}}{1-r} \quad $ for all $n \in \mathbb{Z}^{+}$ .
参考答案:     查看本题详细解析

标记此题
8#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Using the method of proof by contradiction, pr3.,qq/ef x3odpee ,2iit* u jyove that $ \sqrt{3} $ is irrational.
参考答案:    

标记此题
9#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The Fibonacci sequence is defined anq tr 6pl:m4 /z(+ek(:ynggbcs follows:

$\begin{array}{l}
a_{0}=0, a_{1}=1, a_{2}=1 \\
a_{n}=a_{n-1}+a_{n-2} \text { for } n \geq 2 .(F S)
\end{array}$

Prove by mathematical induction that $a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}=a_{n} a_{n+1}$ , where $n \in \mathbb{Z}^{+}$ .
参考答案:    

标记此题
10#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Prove by contradiction that the ebfag6+v (umzjx07fo7zm2 2cz quation $ 3 x^{3}-7 x^{2}+5=0 $ has no integer roots.
参考答案:    

标记此题
11#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $y=x^{2} e^{x}$ , for $x \in \mathbb{R}$ .
1. Find $frac{\mathrm{d} y}{\mathrm{~d} x}$ .
2. Prove by mathematical induction that

$\frac{\mathrm{d}^{n}}{\mathrm{~d} x^{n}}\left(x^{2} e^{x}\right)=\left(n(n-1)+2 n x+x^{2}\right) e^{x} \quad \text { for all } n \in \mathbb{Z}^{+}, n \geq 2$
参考答案:     查看本题详细解析

标记此题
12#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $ f(x)=(x+1) e^{-2 x}$, $x \in \mathbb{R}$ .
1. Find $f^{\prime}(x)$ .
2. Prove by induction that $\frac{\mathrm{d}^{n} f}{\mathrm{~d} x^{n}}=\left[n(-2)^{n-1}+(-2)^{n}(x+1)\right] e^{-2 x} for all n \in \mathbb{Z}^{+}$ .
参考答案:     查看本题详细解析

标记此题
13#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Using the principle of mathemzi1e vat) 1od5atical induction, prove that $n\left(n^{2}+5\right)$ is divisible by 6 \ for all integers $n \geq 1 \ $.
参考答案:     查看本题详细解析

标记此题
14#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
1. Solve the inequality(r;laj, hv9trh a, rm(x.q-jr $x^{2} \geq 2 x+3 $.
2. Use mathematical induction to prove that $2^{n}>n^{2}-2 $ for all $n \in \mathbb{Z}^{+}$, $n \geq 3$ .
参考答案:     查看本题详细解析

标记此题
15#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
1. Show that $\frac{1}{2 \sqrt{n+1}}<\sqrt{n+1}-\sqrt{n}$ , where $ \in \mathbb{Z}$, $n \geq 0$ .
2. Hence show that $\frac{1}{\sqrt{2}}<2 \sqrt{2}-2$ .
3. Prove by mathematical induction that

$\sum_{r=2}^{n} \frac{1}{\sqrt{r}}<2 \sqrt{n}-2 \quad $ for all $ n \in \mathbb{Z}^{+}, n \geq 2$
参考答案:     查看本题详细解析

标记此题
16#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
This question asks you to investigate some properties of hexagonaljyjho6:.cy -2nocwk/6l6qa+-l y you numbers. Hexagonal numbeau hyc-.6qo6loy6-k yc j 2lo:yn +w/jrs can be represented by dots as shown below where $h_{n}$ denotes the n th hexagonal number, $n \in \mathbb{N} $.



Note that 6 points are required to create the regular hexagon $h_{2}$ with side of length 1 , while 15 points are required to create the next hexagon $h_{3}$ with side of length 2 , and so on.
1. Write down the value of $h_{5}$ .
2. By examining the pattern, show that $h_{n+1}=h_{n}+4 n+1, n \in \mathbb{N}$ .
3. By expressing $h_{n}$ as a series, show that $h_{n}=2 n^{2}-n, n \in \mathbb{N}$ .
4. Hence, determine whether 2016 is a hexagonal number.
5. Find the least hexagonal number which is greater than 80000 .
6. Consider the statement:
45 is the only hexagonal number which is divisible by 9 .
Show that this statement is false.

Matt claims that given $h_{1}=1$ and $ h_{n+1}=h_{n}+4 n+1$, n $\in \mathbb{N}$ , then

$h_{n}=2 n^{2}-n, \quad n \in \mathbb{N}$

7. Show, by mathematical induction, that Matt's claim is true for all n $\in \mathbb{N}$ .
参考答案:     查看本题详细解析

标记此题
17#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $f(x)=(x-1) e^{\frac{x}{3}}$ , for $x \in \mathbb{R}$ .
1. Find $f^{\prime}(x)$ .
2. Prove by induction that $\frac{\mathrm{d}^{n} f}{\mathrm{~d} x^{n}}=\left(\frac{3 n+x-1}{3^{n}}\right) e^{\frac{x}{3}}$ for all $n \in \mathbb{Z}^{+}$ .
3. Find the coordinates of any local maximum and minimum points on the graph of y=f(x) . Justify whether such point is a maximum or a minimum.
4. Find the coordinates of any points of inflexion on the graph of y=f(x) . Justify whether such point is a point of inflexion.
5. Hence sketch the graph of $y=f(x)$ , indicating clearly the points found in parts (c) and (d) and any intercepts with the axes.
参考答案:     查看本题详细解析

标记此题
18#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
1. Use de Moivre's theorem to find the valuek1t af2jcu)o:b 622 golnu6zu of $ \left[\cos \left(\frac{\pi}{6}\right)+\mathrm{i} \sin \left(\frac{\pi}{6}\right)\right]^{12}$ .
2. Use mathematical induction to prove that

$(\cos \alpha-\mathrm{i} \sin \alpha)^{n}=\cos (n \alpha)-\mathrm{i} \sin (n \alpha) \quad $for all $ n \in \mathbb{Z}^{+} $.

Let $w=\cos \alpha+\mathrm{i} \sin \alpha$ .
3. Find an expression in terms of $\alpha$ for $ w^{n}-\left(w^{*}\right)^{n}$, $n \in \mathbb{Z}^{+}$ , where $ w^{*}$ is the complex conjugate of w .
4. 1. Show that $w w^{*}=1$ .
2. Write down and simplify the binomial expansion of $ \left(w-w^{*}\right)^{3}$ in terms of w and $w^{*}$ .
3. Hence show that $ \sin (3 \alpha)=3 \sin \alpha-4 \sin ^{3} \alpha$ .
5. Hence solve $4 \sin ^{3} \alpha+(2 \cos \alpha-3) \sin \alpha=0$ for $0 \leq \alpha \leq \pi$ .
参考答案:     查看本题详细解析

标记此题
19#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $f(x)=\frac{1}{\sqrt{1-x}}, x<1 $.
1. Show that f$^{\prime \prime}(x)=\frac{3}{4}(1-x)^{-5 / 2}$ .
2. Use mathematical induction to prove that

$f^{(n)}(x)=\left(\frac{1}{4}\right)^{n} \frac{(2 n)!}{n!}(1-x)^{-1 / 2-n} \quad n \in \mathbb{Z}$, $\quad n \geq 2$

Let $g(x)=\cos (m x), m \in \mathbb{Q} $.
Consider the function h defined by $h(x)=f(x) \times g(x)$ for x<1 .
The $x^{2}$ term in the Maclaurin series for h(x) has a coefficient of $-\frac{3}{4} $.
3. Find the possible values of m .
参考答案:     查看本题详细解析

标记此题
20#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The following diagram shows the graph ofk4zv j i29g0o q6pd;zy $y=\arctan (2 x-3)+\frac{3 \pi}{4} for x \in \mathbb{R}$ , with asymptotes at $y=\frac{\pi}{4} and y=\frac{5 \pi}{4}$ .



1. Describe a sequence of transformations that transforms the graph of $y=\arctan x$ to the graph of $y=\arctan (2 x-3)+\frac{3 \pi}{4}$ for $ \in \mathbb{R} $.
2. Show that $\arctan p-\arctan q \equiv \arctan \left(\frac{p-q}{1+p q}\right)$.
3. Verify that $\arctan (x+2)-\arctan (x+1)=\arctan \left(\frac{1}{(x+1)^{2}+(x+1)+1}\right)$ .
4. Using mathematical induction and the results from part (b) and (c), prove that

$\sum_{r=1}^{n} \arctan \left(\frac{1}{r^{2}+r+1}\right)=\arctan (n+1)-\frac{\pi}{4} \quad $ for $n \in \mathbb{Z}^{+}$
参考答案:    

  • :
  • 总分:20分 及格:12分 时间:不限时
    未答题: 已答题:0 答错题:
    当前第 题,此次习题练习共有 20 道题
    本系统支持习题练习,作业与考试三大模式,作业考试自动评分,成绩排序一键导出,可设定动态变量同一试卷千人千题
    如果您对本系统感兴趣,想加入我们或者想进行任何形式的合作,请加微信 skysky1258

    浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

    GMT+8, 2024-11-22 01:32 , Processed in 0.093012 second(s), 61 queries , Redis On.