题库网 (tiku.one)

 找回密码
 立即注册

 

      

上传图片附件

未使用图片

小贴士: 允许的图片文件格式为: gif, jpg, jpeg, png, webp,上传完成后会在上方生成预览,用鼠标连续双击缩略图,或拖动缩略图,该图片就被绑定至本题,显示在题目下方

本次作答已使用

小贴士: 此栏目显示的是当前作答使用的所有图片,绑定到某一题目的图片同时会显示在该题目下方; 删除使用的图片会将其转移到<未使用图片>类别


习题练习:Proofs  Proofs 



 作者: admin发布日期: 2024-06-04 15:43   总分: 20分  得分: _____________

答题人: 匿名未登录  开始时间: 24年06月04日 15:43  切换到: 整卷模式

标记此题
1#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Consider two consecutive positive integers, k and j 1 q+iz5h5 kfxwxez99 k+1 .
Show that the difference of their squares is equal to the sum of the two integers.
参考答案:     查看本题详细解析

标记此题
2#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Prove that the sum of three cons dkl1r)6m :f9oapuoyq;akf)* ecutive positive integers is divisible by 3 .
参考答案:    

标记此题
3#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Prove that the sum of three consecutive positive integers isyaay vn ,n3-y 1m do(w,uoe9,a divisible by 3 .
参考答案:    

标记此题
4#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The product of three consecutive intltgxqj2f 1 *r+egers is increased by the middle integer. Prove *xt +1lgqr2fj that the result is a perfect cube.
参考答案:    

标记此题
5#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
1. Show that $(2 n-1)^{3}+(2 n+1)^{3}=16 n^{3}+12 n$ for $n \in \mathbb{Z}$ .
2. Hence, or otherwise, prove that the sum of the cubes of any two consecutive odd integers is divisible by four.
参考答案:    

标记此题
6#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Using mathematical induction, prove thfcu,3 ex5-no v0m:-/b6uk7 b8 gdcdidhf5dg zat $ 1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$ for all $ n \in \mathbb{Z}^{+} $.
参考答案:     查看本题详细解析

标记此题
7#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $ r \in \mathbb{R}, r \neq $1 . Use the method of mathematical induction to prove that
$1+r+r^{2}+\cdots+r^{n}=\frac{1-r^{n+1}}{1-r} \quad $ for all $n \in \mathbb{Z}^{+}$ .
参考答案:     查看本题详细解析

标记此题
8#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Using the method of proof by contradiction, proved.m gj ;qehh6(8: unzj)fh4pl that $ \sqrt{3} $ is irrational.
参考答案:    

标记此题
9#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The Fibonacci sequence is q,et*0uf xcx5defined as follows:

$\begin{array}{l}
a_{0}=0, a_{1}=1, a_{2}=1 \\
a_{n}=a_{n-1}+a_{n-2} \text { for } n \geq 2 .(F S)
\end{array}$

Prove by mathematical induction that $a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}=a_{n} a_{n+1}$ , where $n \in \mathbb{Z}^{+}$ .
参考答案:    

标记此题
10#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Prove by contradiction that the equakxcdsfi. .;.8v sx/kqtion $ 3 x^{3}-7 x^{2}+5=0 $ has no integer roots.
参考答案:    

标记此题
11#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $y=x^{2} e^{x}$ , for $x \in \mathbb{R}$ .
1. Find $frac{\mathrm{d} y}{\mathrm{~d} x}$ .
2. Prove by mathematical induction that

$\frac{\mathrm{d}^{n}}{\mathrm{~d} x^{n}}\left(x^{2} e^{x}\right)=\left(n(n-1)+2 n x+x^{2}\right) e^{x} \quad \text { for all } n \in \mathbb{Z}^{+}, n \geq 2$
参考答案:     查看本题详细解析

标记此题
12#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $ f(x)=(x+1) e^{-2 x}$, $x \in \mathbb{R}$ .
1. Find $f^{\prime}(x)$ .
2. Prove by induction that $\frac{\mathrm{d}^{n} f}{\mathrm{~d} x^{n}}=\left[n(-2)^{n-1}+(-2)^{n}(x+1)\right] e^{-2 x} for all n \in \mathbb{Z}^{+}$ .
参考答案:     查看本题详细解析

标记此题
13#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Using the principle of mathematical induction,tv jp5d8bt sx5l -.kn. prove that $n\left(n^{2}+5\right)$ is divisible by 6 \ for all integers $n \geq 1 \ $.
参考答案:     查看本题详细解析

标记此题
14#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
1. Solve the inequaliq1;gj+lcnt :q:l.zu2de lu2 vty $x^{2} \geq 2 x+3 $.
2. Use mathematical induction to prove that $2^{n}>n^{2}-2 $ for all $n \in \mathbb{Z}^{+}$, $n \geq 3$ .
参考答案:     查看本题详细解析

标记此题
15#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
1. Show that $\frac{1}{2 \sqrt{n+1}}<\sqrt{n+1}-\sqrt{n}$ , where $ \in \mathbb{Z}$, $n \geq 0$ .
2. Hence show that $\frac{1}{\sqrt{2}}<2 \sqrt{2}-2$ .
3. Prove by mathematical induction that

$\sum_{r=2}^{n} \frac{1}{\sqrt{r}}<2 \sqrt{n}-2 \quad $ for all $ n \in \mathbb{Z}^{+}, n \geq 2$
参考答案:     查看本题详细解析

标记此题
16#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
This question asks you to investigate some properties of hexagonal numbers. Hp)rpx8p6xiy 9z .jqi d)19 wvtexagonal numbers can be represented by dots as shown bel1dq 98i.rvpj zytxp p)9i )x6wow where $h_{n}$ denotes the n th hexagonal number, $n \in \mathbb{N} $.



Note that 6 points are required to create the regular hexagon $h_{2}$ with side of length 1 , while 15 points are required to create the next hexagon $h_{3}$ with side of length 2 , and so on.
1. Write down the value of $h_{5}$ .
2. By examining the pattern, show that $h_{n+1}=h_{n}+4 n+1, n \in \mathbb{N}$ .
3. By expressing $h_{n}$ as a series, show that $h_{n}=2 n^{2}-n, n \in \mathbb{N}$ .
4. Hence, determine whether 2016 is a hexagonal number.
5. Find the least hexagonal number which is greater than 80000 .
6. Consider the statement:
45 is the only hexagonal number which is divisible by 9 .
Show that this statement is false.

Matt claims that given $h_{1}=1$ and $ h_{n+1}=h_{n}+4 n+1$, n $\in \mathbb{N}$ , then

$h_{n}=2 n^{2}-n, \quad n \in \mathbb{N}$

7. Show, by mathematical induction, that Matt's claim is true for all n $\in \mathbb{N}$ .
参考答案:     查看本题详细解析

标记此题
17#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $f(x)=(x-1) e^{\frac{x}{3}}$ , for $x \in \mathbb{R}$ .
1. Find $f^{\prime}(x)$ .
2. Prove by induction that $\frac{\mathrm{d}^{n} f}{\mathrm{~d} x^{n}}=\left(\frac{3 n+x-1}{3^{n}}\right) e^{\frac{x}{3}}$ for all $n \in \mathbb{Z}^{+}$ .
3. Find the coordinates of any local maximum and minimum points on the graph of y=f(x) . Justify whether such point is a maximum or a minimum.
4. Find the coordinates of any points of inflexion on the graph of y=f(x) . Justify whether such point is a point of inflexion.
5. Hence sketch the graph of $y=f(x)$ , indicating clearly the points found in parts (c) and (d) and any intercepts with the axes.
参考答案:     查看本题详细解析

标记此题
18#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
1. Use de Moivre's theorem to/8 uecy wtmn/n(7 q4of find the value of $ \left[\cos \left(\frac{\pi}{6}\right)+\mathrm{i} \sin \left(\frac{\pi}{6}\right)\right]^{12}$ .
2. Use mathematical induction to prove that

$(\cos \alpha-\mathrm{i} \sin \alpha)^{n}=\cos (n \alpha)-\mathrm{i} \sin (n \alpha) \quad $for all $ n \in \mathbb{Z}^{+} $.

Let $w=\cos \alpha+\mathrm{i} \sin \alpha$ .
3. Find an expression in terms of $\alpha$ for $ w^{n}-\left(w^{*}\right)^{n}$, $n \in \mathbb{Z}^{+}$ , where $ w^{*}$ is the complex conjugate of w .
4. 1. Show that $w w^{*}=1$ .
2. Write down and simplify the binomial expansion of $ \left(w-w^{*}\right)^{3}$ in terms of w and $w^{*}$ .
3. Hence show that $ \sin (3 \alpha)=3 \sin \alpha-4 \sin ^{3} \alpha$ .
5. Hence solve $4 \sin ^{3} \alpha+(2 \cos \alpha-3) \sin \alpha=0$ for $0 \leq \alpha \leq \pi$ .
参考答案:     查看本题详细解析

标记此题
19#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $f(x)=\frac{1}{\sqrt{1-x}}, x<1 $.
1. Show that f$^{\prime \prime}(x)=\frac{3}{4}(1-x)^{-5 / 2}$ .
2. Use mathematical induction to prove that

$f^{(n)}(x)=\left(\frac{1}{4}\right)^{n} \frac{(2 n)!}{n!}(1-x)^{-1 / 2-n} \quad n \in \mathbb{Z}$, $\quad n \geq 2$

Let $g(x)=\cos (m x), m \in \mathbb{Q} $.
Consider the function h defined by $h(x)=f(x) \times g(x)$ for x<1 .
The $x^{2}$ term in the Maclaurin series for h(x) has a coefficient of $-\frac{3}{4} $.
3. Find the possible values of m .
参考答案:     查看本题详细解析

标记此题
20#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The following diagram sh;ju z0-s; qb m8ro2vrdows the graph of $y=\arctan (2 x-3)+\frac{3 \pi}{4} for x \in \mathbb{R}$ , with asymptotes at $y=\frac{\pi}{4} and y=\frac{5 \pi}{4}$ .



1. Describe a sequence of transformations that transforms the graph of $y=\arctan x$ to the graph of $y=\arctan (2 x-3)+\frac{3 \pi}{4}$ for $ \in \mathbb{R} $.
2. Show that $\arctan p-\arctan q \equiv \arctan \left(\frac{p-q}{1+p q}\right)$.
3. Verify that $\arctan (x+2)-\arctan (x+1)=\arctan \left(\frac{1}{(x+1)^{2}+(x+1)+1}\right)$ .
4. Using mathematical induction and the results from part (b) and (c), prove that

$\sum_{r=1}^{n} \arctan \left(\frac{1}{r^{2}+r+1}\right)=\arctan (n+1)-\frac{\pi}{4} \quad $ for $n \in \mathbb{Z}^{+}$
参考答案:    

  • :
  • 总分:20分 及格:12分 时间:不限时
    未答题: 已答题:0 答错题:
    当前第 题,此次习题练习共有 20 道题
    本系统支持习题练习,作业与考试三大模式,作业考试自动评分,成绩排序一键导出,可设定动态变量同一试卷千人千题
    如果您对本系统感兴趣,想加入我们或者想进行任何形式的合作,请加微信 skysky1258

    浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

    GMT+8, 2025-4-4 11:14 , Processed in 0.077913 second(s), 62 queries , Redis On.