题库网 (tiku.one)

 找回密码
 立即注册

 

      

上传图片附件

未使用图片

小贴士: 允许的图片文件格式为: gif, jpg, jpeg, png, webp,上传完成后会在上方生成预览,用鼠标连续双击缩略图,或拖动缩略图,该图片就被绑定至本题,显示在题目下方

本次作答已使用

小贴士: 此栏目显示的是当前作答使用的所有图片,绑定到某一题目的图片同时会显示在该题目下方; 删除使用的图片会将其转移到<未使用图片>类别


习题练习:Properties of Functions



 作者: admin发布日期: 2024-06-09 22:22   总分: 45分  得分: _____________

答题人: 匿名未登录  开始时间: 24年06月09日 22:22  切换到: 整卷模式

标记此题
1#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let $f(x)=x^{2}+2$ and g(x)=x-3 , for $x \in \mathbb{R}$ .
1. Find f(3) . =   
2. Find $(g \circ f)(3)$ . =   
3. Find $g^{-1}(x)$ . =  (代数式) 

参考答案:     查看本题详细解析

标记此题
2#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let $f(x)=x^{3}$ and g(x)=2 x-1 , for $x \in \mathbb{R}$ .
1. Find $g^{-1}(x)$ . =  (代数式) 
2. Find $(g \circ f)(x)$ . =  (代数式) 
3. Solve the equation $(g \circ f)(x)=0$ .≈   

参考答案:     查看本题详细解析

标记此题
3#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let f(x)=4 x-3 and r3 y- znru1inv7pv+p($g(x)=2$ x , for $x \in \mathbb{R}$.
1. Write down the value of g(5) . =   
2. Find $(f \circ g)(x)$ . =  (代数式) 
3. Find $(f \circ g)^{-1}(x)$ . =  (代数式) 

参考答案:     查看本题详细解析

标记此题
4#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let $f(x)=2 x$,$ g(x)=4 x+6 $ and $ h(x)=(f \circ g)(x)$ , for $x \in \mathbb{R} $.
1. Find $h(x) $.  (代数式) 
2. Find $ h^{-1}(x)$ .  (代数式) 

参考答案:     查看本题详细解析

标记此题
5#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let $f(x)=\sqrt{x-3}$ , for $x \geq 3$ .
1. Find $f^{-1}(x)$ .

Let $g(x)=x^{2}+1$ , for $x \in \mathbb{R}$ . =  (代数式) 
2. Find $(g \circ f)(28)$ . =   
3. Write down the range of:
1. $f^{-1}$ ;
2. g .

参考答案:     查看本题详细解析

标记此题
6#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let $f(x)=x^{3}+1 $ and g(x)=x-2 , for $x \in \mathbb{R}$ .
1. Find $f(2)$ . =   
2. Find $ f^{-1}(x)$ . =  (代数式) 
3. Solve $(f \circ g)(x)=0 .$   

参考答案:     查看本题详细解析

标记此题
7#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  1. Find $f^{-1}(3)$ .

Let g be a function such that g^{-1} exists for all real numbers. =   
2. Given that g(9)=4 , find $\left(f \circ g^{-1}\right)(4) $. =   

参考答案:     查看本题详细解析

标记此题
8#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The following diagram shows the graph of y=f(x) , w )lri )iqk*ops 79(0 dc f0ig,4cxvuzfor $-4 \leq x \leq 5$.



1. Write down the value of:
1. f(1) ;
2. $f^{-1}(2) $.
2. Find the domain of $f^{-1}$ .
3. Sketch the graph of $y=f^{-1}(x)$ on the same grid above.
参考答案:    

标记此题
9#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let $f(x)=(x+2)^{3}$ , for $x \in \mathbb{R}$ .
1. Find $f^{-1}(x)$ .

Let g be a function so that $(f \circ g)(x)=27 x^{6}$ . =  (代数式) 
2. Find g(x) . =  (代数式) 

参考答案:     查看本题详细解析

标记此题
10#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let f(x)=0.2 $e^{x+2}-4$ , for $-3 \leq x \leq 2$ .
1. On the following grid, sketch the graph of y=f(x) .

2. Find the coordinates of:
1. the x -intercept;
2. the y -intercept.

The graph of f is reflected in the x -axis and then translated by the vector $ \binom{1}{2}$ to obtain the graph of a function g .
3. Find g(x) .
参考答案:     查看本题详细解析

标记此题
11#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The equation of a line s7p79hqn+qna l, wcnist; k8 +$ L_{1}$ is 2 x+3 y=-5 .
1. Find the gradient of $L_{1}$ .

A second line, $L_{2}$ , is perpendicular to $L_{1}$ .   
2. State the gradient of $L_{2}$ .

The point $\mathrm{P}(4,0)$ lies on $L_{2}$ .   
3. Find the equation of $L_{2}$ , giving your answer in the form a x+b y+d=0 , where a, b, d $\in \mathbb{Z}$ .

The point \mathrm{Q} is the intersection of L_{1} and L_{2} . y=  (代数式) 
4. Find the coordinates of Q . (a,b) a =    b =   

参考答案:     查看本题详细解析

标记此题
12#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Two functions, f and gik. ,l fbhvgb:i)0nz9.pjf:o7kab d ., are defined in the following table.

1. Write down the value of $f(2)$ .   
2. Find the value of $(g \circ f)(2)$ .   
3. Find the value of $g^{-1}(5)$ .   

参考答案:     查看本题详细解析

标记此题
13#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The following diagram shows the graph of y=f(14-ng veqm+wpipftmld3 ( 1,zx) , for $-1 \leq x \leq 2 $.



1. Write down the value of:
1. $f(1)$ ;
2. $f^{-1}(-2)$ .
2. Find $(f \circ f)(1)$ .
3. Sketch the graph of y=f(-x) on the same grid above.
参考答案:    

标记此题
14#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  1. Express $2 x^{2}-8 x+9$ in the form $ a(x+b)^{2}+c$ where a, b, c $\in \mathbb{Z}$ .  (代数式) 
2. Given that f(x)=x-2 and $(g \circ f)(x)=2 x^{2}-8 x+9$ , find g(x) .  (代数式) 

参考答案:     查看本题详细解析

标记此题
15#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let $ f(x)=e^{x}-2 $ and $g(x)=3 x+k$ , for $x \in \mathbb{R}$ , where k is a constant.
1. Find $(g \circ f)(x)$ .  (代数式) 
2. Given that $\lim _{x \rightarrow-\infty}(g \circ f)(x)=-4$ , find the value of k .  (代数式) 

参考答案:     查看本题详细解析

标记此题
16#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let $ f(x)=\frac{\ln (x+2)}{2}$, for x>-2. The diagram below shows part of the graph of f .



1. Find the coordinates of:
1. the x -intercept; (a,b) a =    b =   
2. the y -intercept.(a,b) a =    b =   
2. Find the equation of the vertical asymptote to the graph of f .x =   
3. Find the area of the region enclosed by the graph of f , the x -axis and the y -axis. A ≈   

参考答案:     查看本题详细解析

标记此题
17#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The function f is defi9n) eoz0riogvc5l,s 8 g5 k6f;u)v t0p5otkkuned by $f(x)=\sqrt[3]{2 x+1}$ , for $-14 \leq x \leq 13$ .
1. Write down the range of f . [a,b] a =    b =   
2. Find an expression for $f^{-1}$ .  (代数式) 
3. Write down the domain and range of $f^{-1}$ .doamin [a,b] a =    b =    range [a,b] a =    b =   

参考答案:     查看本题详细解析

标记此题
18#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The fThe function f is defi v/pz9(t uzx50mm kp7fhaorlr0 5,o *lned by


1. Determine whether or not f is continuous at x=1 .

The graph of the function g is obtained by applying the following transformations to the graph of f :
a horizontal translation 2 units to the left, followed by
a reflection in the x -axis, followed by
a vertical stretch by a factor of 3 .
2. Find g(x) .
参考答案:    

标记此题
19#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  1. Express 3 x^{2}+18 x+20 in the form $a(x+b)^{2}+c$ where a, b, c $\in \mathbb{Z}$ .  (代数式) 
2. Given that f(x)=x+3 and ($g \circ f$)(x)=3 x^{2}+18 x+20 , find g(x) .  (代数式) 

参考答案:     查看本题详细解析

标记此题
20#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The functions f and g are defined such thatu no6z xjmb:fpz wk 6o: p;kjo9,i,( vk+z56qw $ f(x)=\frac{x-2}{3}$ and $g(x)=12 x+4 $.
1. Show that $(g \circ f)(x)=4 x-4$.  (代数式) 
2. Given that $(g \circ f)^{-1}(a)=10$ , find the value of a .   

参考答案:     查看本题详细解析

标记此题
21#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $f(x)=\frac{1}{4} x^{2}-2 and g(x)=x^{2}-4 , for $x \in \mathbb{R}$ .
1. Show that $(f \circ g)(x)=\frac{1}{4} x^{4}-2 x^{2}+2$ . __
2. On the following grid, sketch the graph of $y=(f \circ g)(x) $, for $0 \leq x \leq 3 $. __
参考答案:    

标记此题
22#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $f(x)=\frac{1}{4}$ $x^{2}-2 $ and g(x)=x^{2}-4 , for $x \in \mathbb{R}$ .
1. Show that $(f \circ g)(x)=\frac{1}{4} x^{4}-2 x^{2}+2$ .
2. On the following grid, sketch the graph of $y=(f \circ g)(x)$ , for $ 0 \leq x \leq 3 $.
参考答案:    

标记此题
23#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The area, A , of a given square can *(di0tqa t (6/+qdxd*vba pw jbe represented by the function

$A(P)=\frac{P^{2}}{16}$, $\quad P \geq 0$,

where P is the perimeter of the square.
The graph of the function A , for $0 \leq P \leq 20$ , is shown below.

1. Find the value of A(20) .
2. On the grid above, draw the graph of the inverse function, $A^{-1}$ .
3. In the context of the question, explain the meaning of $A^{-1}(4)=8$ .
参考答案:    

标记此题
24#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The circumference, C , of a given circle can be represented bt11( io4:jnx vu8m bunc icaml,-4;yyy the function

$C(A)=2 \pi \sqrt{\frac{A}{\pi}}, \quad A \geq 0$

where A is the area of the circle.
The graph of the function C , for $0 \leq A \leq 24 $, is shown below.

1. Find the value of C(24) .
2. On the grid above, draw the graph of the inverse function, $C^{-1}$ .
3. In the context of the question, explain the meaning of $C^{-1}(2 \pi)=\pi$ .
参考答案:    

标记此题
25#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The ocean pressure, P , under sea level can be modelled by ,:,iim719m- dqju 3jir mwbkbux+8ma the function

$P(D)=\frac{D}{10}+1$

where D is the distance in metres below sea level and P is measured in atmospheres.
A submarine cruising near the surface is submerged according to the function

D(t)=10+5 t

where t is measured in minutes and D is the distance the submarine is below sea level, measured in metres.
1. Find the composite function $P \circ D$ and explain what it means in the context of this question
2. Find and interpret $(P \circ D)(10)$ .
参考答案:    

标记此题
26#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
A tyre manufacturing compazzj1va8l. op- ny has found that the number of tyres it produces, N , can be modelled by the funpl8.- vz1ojza ction

N(t)=3 t-9

where t is the number of hours the factory operates per day, with a minimum of 3 hours.
The profit the company makes, P , in dollars, depends on the number of tyres produced, and is modelled by the function

P(N)=60 N-850

where N is the number of tyres produced.
1. Find the company's profit or loss if it operates for 6 hours per day.
2. Find the company's profit in terms of the hours of operation per day, t .
3. Determine the number of hours the company needs to operate the factory per day in order to earn a positive profit. Give your answer to the nearest hour.
参考答案:    

标记此题
27#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
A town is planning to construct a jogging path in asw0db7 ht,:xbhey mjh1kx1 / * grass field 170 $\mathrm{~m} $ long and 70$\mathrm{~m}$ wide. The path is to be the shape of a rectangle with two semicircles of radius x , as shown in the diagram. The sides of the rectangle connecting the circles are to be 100$ \mathrm{~m}$ long.



1. Write down a function, P , (in metres) for the perimeter of the jogging path, in terms of the radius, x .
2. Determine the domain and range of P , taking into consideration the dimensions of the grass field.
3. Find an equation for the inverse function $P^{-1}(x)$ . Express your answer in the form $ P^{-1}(x)=m x+c$ .

The designers of the path are deciding whether the total length of the path should be 300 $\mathrm{~m}$, 400 $\mathrm{~m}$ , or 500 $\mathrm{~m}$ . The designers want to maximise the perimeter of the path, but fit the path in the grass field.
4. Determine which length is most suitable, given the dimensions of the grass field.
参考答案:    

标记此题
28#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Harry is planning on constructing a glass window in one of tbf tv*(i:od: 1zdyj .vq9t1irl/p4e the outer walls of his house. The dimensions of the wall space available are 2m x 2m. Harry wants the window to be in the shape shown in the diagram below. The bottom section is a rectangle and the top part is a semicircle of radius x m. Harry wants the height of the rectangle to be fixed at 1 m. vo1/ifptdb1 (qd9 *vi: ejrztl .4:t y



1. Write down a function P (in metres) for the perimeter of the window in terms of the radius, x .
2. Determine the domain and range of P , taking into consideration the dimensions of the available wall.
3. Find an equation for the inverse function $P^{-1}(x)$ .

Harry wants to maximise the size of the window, however the window frame that covers the perimeter of the window can only be 5,6 , or 7 metres long, due to manufacturing restrictions.
4. Determine which perimeter length is the best option for Harry.
参考答案:    

标记此题
29#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The function f is deuc04pu0 rkcwv:h c 7z-fined as $f(x)=\sqrt{\frac{6+2 x}{6-2 x}}$ , for $-3 \leq x<3 $. Find the inverse function of f , stating its domain and range.
参考答案:    

标记此题
30#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let f(x)=$\frac{5}{x+1}$ , for $ x \neq-1 $.
1. For the graph of f , find:
1. the x -intercept;
2. the y -intercept;
3. the equation of the vertical asymptote.

Let g(x)=x-3 , for x $\in \mathbb{R}$. The graphs of f and g intersect at points $\mathrm{A} $ and $ \mathrm{B}$ .
2. Find the coordinates of A and B .
3. Find the equation of the straight line that passes through A and B , giving your answer in the form y=m x+c .
4. Write down the gradient of the line that is perpendicular to the line passing through A and B .
参考答案:    

标记此题
31#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The following diagram shows the graph of y=vjbp1kouuqur9 *k20 ;f(x). The graph has a horizontal asymptote at y=-2. The graph crosses the x-axis at x=-2 and x=2 , and the y -axis at y=2 ok u1jb02u;p* k vq9ru.


$\text { On the following set of axes, sketch the graph of } y=[f(x)]^{2}-1 \text {, clearly showing any asymptotes with their equations and the coordinates of any local maxima or minima. }$
参考答案:    

标记此题
32#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
1. Write down the domain and range of mi)sl 6eae-f 4the logarithmic function $y=\log _{a}$ x where a>0 and a $\neq 1$ .
2. Given that $\log _{x^{2}} y=9 \log _{y}\left(x^{2}\right)$ , find all the possible expressions of y as a function of x .
参考答案:    

标记此题
33#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Consider the graphs of(yk/y6h3yi :wmu vd;ll+uf0j, ty uq3 $y=-\frac{1}{2}|x|$ and y=2|x|-a , where $a \in \mathbb{Z}^{+}$ .
1. Sketch the graphs on the same set of axes.
2. Given that the graphs enclose a region of area 40 square units, find the value of a .
参考答案:    

标记此题
34#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Consider the function y eii7xd4)p(z $f(x)=x^{2} \arcsin (x)$ , for $-1 \leq x \leq 1$ .
1. Sketch the graph of y=f(x) .
2. Write down the range of f .
3. Solve the inequality $\left|x^{2} \arcsin (x)\right|>0.5$ .
参考答案:    

标记此题
35#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
$\text { The following diagram shows the graph of } y=f(x) \text {. The graph has a horizontal asymptote at } y=-2 \text {. The graph crosses the } x \text {-axis at } x=-1 \text { and } x=1 \text {, and the } y \text {-axis at } y=2 \text {. }$


$\text { On the following set of axes, sketch the graph of } y=[f(x)]^{2}-2 \text {, clearly showing any asymptotes with their equations and the coordinates of any local maxima or minima. }$
参考答案:    

标记此题
36#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $f(x)=e^{3 \sin \left(\frac{\pi x}{4}\right)}$ , for x>0 .
The k th maximum point on the graph of f has x -coordinate $ x_{k}$ , where $k \in \mathbb{Z}^{+}$ .
1. Given that $x_{k+1}=x_{k}+d$ , find d .
2. Hence find the value of n such that $\sum_{k=1}^{n} x_{k}=992$ .
参考答案:    

标记此题
37#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { Let } f(x)=a x^{3}+b x^{2}+c x+d \text {, for } x \in \mathbb{R} \text {, where } a, b, c, d \in \mathbb{Q} \text {. The diagram below shows part of the graph of } y=f(x) \text {. }$



1. Using the information shown in the diagram, find the values of a, b, c and d . a =    b =    c =   
2. Let $g(x)=-\frac{3}{4} f(-2 x+1)$ .
1. Find the coordinates of the points where the graph of y=g(x) intercepts the x -axis. x =         
2. Find the y -intercept of the graph of y=g(x) .P (A,B) A =    B =   

参考答案:     查看本题详细解析

标记此题
38#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $ f(x)=x^{4}-x^{3}-5 x^{2}+3 x+2$ , for $x \in \mathbb{R}$ .
1. Solve the inequality f(x)<0 .
2. For the graph of y=f(x) , find the coordinates of the local maximum point. Round your answers to three significant figures.

The domain of f is now restricted to [a, b] where a,$ b \in \mathbb{R}$ .
3. 1. Write down the smallest value of a<0 and the largest value of b>0 for which f has an inverse. Give your answers correct to three significant figures.
2. For these values of a and b , sketch the graphs of y=f(x) and $ y=f^{-1}(x)$ on the same set of axes, showing clearly the coordinates of the end points of each curve.
3. Solve the equation $f^{-1}(x)=-1$ .
参考答案:    

标记此题
39#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Consider $f(x)=\frac{1}{2}-\ln \left(\sqrt{x^{2}-4}\right)$ .
1. Find the largest possible domain D for f to be a function.

The function f is defined by $f(x)=\frac{1}{2}-\ln \left(\sqrt{x^{2}-4}\right) $, for $ x \in D$ .
2. Sketch the graph of y=f(x) , showing clearly the equations of asymptotes and the coordinates of any intercepts with the axes.
3. Explain why f is an even function.
4. Explain why the inverse function $f^{-1}$ does not exist.

The function g is defined by $g(x)=\frac{1}{2}-\ln \left(\sqrt{x^{2}-4}\right)$ , for $ x \in(2, \infty)$ .
5. Find the inverse function $g^{-1}$ and state its domain.
参考答案:    

标记此题
40#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The function f is detpta4g 14e hmdnn9s/m3jvr8y*;ut n; fined by $f(x)=1+\frac{4 x}{x+3}$ , for $x \neq-3$ .
1. Sketch the graph of $y=f(x)$ , indicating clearly any asymptotes and points of intersection with the x and y axes.
2. Find an expression for $f^{-1}$ .
3. Find all values of x for which $f(x)=f^{-1}(x)$.
4. Solve the inequality $|f(x)|<2$ .
5. Solve the inequality $f(|x|)<2$ .
参考答案:    

标记此题
41#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
1. Sketch the curve isvge,gb39 i0f zgc1 +$ y=-\left|\frac{5}{x-2}\right| $ and line y=-x-4 on the same axes, clearly indicating any x and y intercepts and any asymptotes.
2. Find the exact solutions to the equation $x+4=\frac{5}{|x-2|}$ .
参考答案:    

标记此题
42#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
It is given that $f(x)=2 x^{4}+5 x^{3}+a x^{2}+b x+4$ , for x $\in \mathbb{R}$ , where a, b $\in \mathbb{Z}^{+}$ .
1. Given that $x^{2}+x-2$ is a factor of f(x) , find the values of a and b .
2. Factorise f(x) into a product of linear factors.
3. Sketch the graph of y=f(x) , labeling the maximum and minimum points and the x and y intercepts.
4. Using your graph, state the range of values of c for which f(x)=c has exactly four distinct real roots.
参考答案:    

标记此题
43#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The function f is defifhj*j/d- j t c b:-:vzhc;au6alnku m65tc5k/ned by $f(x)=e^{2 x}-4 e^{x}+2$ , for $ x \in \mathbb{R}$, $x \leq a$ , where a \in \mathbb{R} . Part of the graph of y=f(x) is shown in the following diagram.




1. Find the largest value of a such that f has an inverse function.  (数值) 
2. For this value of a , find an expression for $f^{-1}(x)$  (代数式)  stating its domain

参考答案:     查看本题详细解析

标记此题
44#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $ f(x)=x^{4}-0.4 x^{3}-2.85 x^{2}+0.9 x+1.35 $, for $ x \in \mathbb{R} $.
1. Find the solutions for f(x)>0 .
2. For the graph of y=f(x) ,
1. find the coordinates of local minimum and maximum points.
2. find the x -coordinates of the points of inflexion.

The domain of f is now restricted to [a, b] where a, b$ \in \mathbb{R}^{+}$ .
3. 1. Write down the smallest value of a>0 and the largest value of b>0 for which f has an inverse. Give your answers correct to three significant figures.
2. For these values of a and b , sketch the graphs of y=f(x) and $y=f^{-1}(x)$ on the same set of axes, showing clearly the coordinates of the end points of each curve.
3. Solve $ f^{-1}(x)=0.5$ .

Let $ g(x)=\frac{2}{3} \sin (2 x-1)+\frac{1}{2}$, $\frac{1}{2}-\frac{\pi}{4} \leq x \leq \frac{1}{2}+\frac{\pi}{4}$ .
4. 1. Find an expression for g^{-1} and state its domain.
2. Solve $\left(f^{-1} \circ g\right)(x)<0.5$ .
参考答案:    

标记此题
45#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
A function f(x) is dgpbhq,b;; (ppxj a-b0 efined by $f(x)=\arccos \left(\frac{x^{2}-1}{x^{2}+1}\right)$, $x \in \mathbb{R}$
1. Show that f is an even function.
2. Find the equation of the horizontal asymptote to the graph of y=f(x) .
3. 1. Show that $f^{\prime}(x)=-\frac{2 x}{\sqrt{x^{2}}\left(x^{2}+1\right)} $ for $x \in \mathbb{R}$, $x \neq 0$ .
2. Using the expression for $f^{\prime}(x) $ and the result $ \sqrt{x^{2}}=|x|$ , show that f is increasing for x<0 .

A function g is defined by $g(x)=\arccos \left(\frac{x^{2}-1}{x^{2}+1}\right)$, $x \in \mathbb{R}$, $x \geq 0$ .
4. Find the range of g .
5. Find an expression for $g^{-1}(x)$ .
6. State the domain of $ g^{-1}(x)$ .
7. Sketch the graph of $y=g^{-1}(x) $. Clearly indicating any asymptotes with their equations and stating the values of any axes intercepts.
参考答案:    

  • :
  • 总分:45分 及格:27分 时间:不限时
    未答题: 已答题:0 答错题:
    当前第 题,此次习题练习共有 45 道题
    本系统支持习题练习,作业与考试三大模式,作业考试自动评分,成绩排序一键导出,可设定动态变量同一试卷千人千题
    如果您对本系统感兴趣,想加入我们或者想进行任何形式的合作,请加微信 skysky1258

    浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

    GMT+8, 2024-12-26 15:19 , Processed in 0.184189 second(s), 111 queries , Redis On.