题库网 (tiku.one)

 找回密码
 立即注册

 

      

上传图片附件

未使用图片

小贴士: 允许的图片文件格式为: gif, jpg, jpeg, png, webp,上传完成后会在上方生成预览,用鼠标连续双击缩略图,或拖动缩略图,该图片就被绑定至本题,显示在题目下方

本次作答已使用

小贴士: 此栏目显示的是当前作答使用的所有图片,绑定到某一题目的图片同时会显示在该题目下方; 删除使用的图片会将其转移到<未使用图片>类别


习题练习:Quadratics



 作者: admin发布日期: 2024-06-13 22:31   总分: 35分  得分: _____________

答题人: 匿名未登录  开始时间: 24年06月13日 22:31  切换到: 整卷模式

标记此题
1#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let $f(x)=x^{2}-2 x-8$ , for x $\in \mathbb{R}$ .
1. Write down the y -intercept of the graph of y=f(x) .   
2. Solve the equation f(x)=0 .      
3. Find the equation of the axis of symmetry of the graph of y=f(x) .  (代数式) 

参考答案:     查看本题详细解析

标记此题
2#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram shows part of the graph of a quadrat*wiu9 p/hkagj b5/ .:pgxu6 5dirvyk( ic function f.


The vertex is at point $ \mathrm{A}$ and the x -intercepts are at points $\mathrm{B} $ and $\mathrm{C}$ . The function f can be written in the form $ f(x)=(x-h)^{2}+k$ .
1. Write down the values of h and k .

The function f can also be written in the form f(x)=(x+p)(x-q) .h =    k =   
2. Write down the values of p and q . p =    q =   
3. Find the y -intercept of the graph of f .   

参考答案:     查看本题详细解析

标记此题
3#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let $f(x)=(x-3)(x+1)$ , for $x \in \mathbb{R} $.
For the graph of f , find:
1. the y -intercept;   
2. the x -intercepts;      
3. the coordinates of the vertex. (a,b) a =    b =   

参考答案:     查看本题详细解析

标记此题
4#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $f(x)=x^{2}-4 x+3$ , for x $\in \mathbb{R}$ .
1. For the graph of y=f(x) , find:
1. the y -intercept;
2. the x -intercepts.
2. The function f can be expressed in the form $f(x)=(x-h)^{2}+k$ . Find the value of h and the value of k .
3. Sketch the graph of y=f(x) on the grid below. Clearly label the intercepts with the axes, and the vertex.
参考答案:    

标记此题
5#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The equation $x^{2}+k x+4=0$ has two equal roots.
Find the possible values of k . ±   

参考答案:     查看本题详细解析

标记此题
6#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let $f(x)=a(x-h)^{2}+k$ , for $x \in \mathbb{R}$ .
The vertex of the graph of f is at $\mathrm{P}(3,4)$ and the graph passes through $\mathrm{Q}(1,-4)$ .
1. Write down the values of h and k . h =    k =   
2. Find the value of a .   

参考答案:     查看本题详细解析

标记此题
7#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The diagram below shows the graph of a quadratic functi a2n)fl +r8h sd+c4dsjon $f(x)=2 x^{2}+b x+c $.




1. Write down the value of c .   
2. Find the value of b and write down f(x) .  (代数式) 
3. Calculate the coordinates of the vertex of the graph of f .(a,b) a =    b =   

参考答案:     查看本题详细解析

标记此题
8#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The equation $x^{2}-k x+1=0$ has two distinct real roots.
Find the possible values of k .
参考答案:    

标记此题
9#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  1. Express $2 x^{2}-8 x+9$ in the form a(x+b)^{2}+c where a, b, $c \in \mathbb{Z}$ .   
2. Given that f(x)=x-2 and $(g \circ f)(x)=2 x^{2}-8 x+9$, find g(x) .   

参考答案:     查看本题详细解析

标记此题
10#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Consider $f(x)=x^{2}+b x+c$ , for x $\in \mathbb{R}$ , where b, c $\in \mathbb{Z}$ . The graph of f has a local minimum at x=2.5 . The distance between the two x -intercepts of the graph of f is 7 .
1. Find the coordinates of the two x -intercepts. (a,b) a =    b =    (c,d) c =    d =   
2. Find the value of b and the value of c .b =    c =   

参考答案:     查看本题详细解析

标记此题
11#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let $f(x)=a x^{2}-24 x+c$ , for $x \in \mathbb{R}$ , where a, c $\in \mathbb{Z}$ .
1. A horizontal line, L , intersects the graph of y=f(x) at x=1 and x=7 .
1. Find the equation of the axis of symmetry of the graph of y=f(x) .   
2. Hence show that a=3 .   
2. The equation of L is y=6 . Find the value of c .   

参考答案:     查看本题详细解析

标记此题
12#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The graph shows the curve of a quadratic functtp s f 19vwdd)n27z6miion of the form $ f(x)=a x^{2}+b x+90 $.



1. Write down the equation for the axis of symmetry of the curve.   
2. Hence, or otherwise, find the value of a and the value of b . a =    b =   
3. Find the y -coordinate of the vertex of the curve.   

参考答案:     查看本题详细解析

标记此题
13#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The equation $x^{2}+(k-3) x-3$ k=0 has two distinct real solutions.
Find the possible values of k .
参考答案:    

标记此题
14#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  1. Express $3 x^{2}+18 x+20$ in the form $a(x+b)^{2}+c$ where a, b, c $\in \mathbb{Z}$ .   
2. Given that f(x)=x+3 and $(g \circ f)(x)=3 x^{2}+18 x+20$ , find g(x) .   

参考答案:     查看本题详细解析

标记此题
15#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let $f(x)=-6 x^{2}+b x+c$ , for x $\in \mathbb{R}$ , where b, c $\in \mathbb{Z}$ .
1. A horizontal line, L , intersects the graph of y=f(x) at (-1, h) and (5, h) , where $h \in \mathbb{R}$ .
1. Find the equation of the axis of symmetry of the graph of y=f(x) .   
2. Hence show that b=24 .   
2. Given h=-8 , find the value of c .   

参考答案:     查看本题详细解析

标记此题
16#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A farmer is going to fence two equal adjacent parcels vum )71 boalimrhl+- a.l+v7dof land. These parcels share one side (which also requires fencing) as shown in the following diagram. The farmer has onl l-rlhvbl o7mv. ad )1maui7++y
80 metres of fence.


1. Write down the equation for the total length of the fence, 80 $\mathrm{~m}$ , in terms of x and y . y =  (代数式) 
2. Write down the total area of both parcels of land in terms of x .  (代数式) 
3. Find the maximum area, in $\mathrm{m}^{2}$ , of one parcel of land. ≈   

参考答案:     查看本题详细解析

标记此题
17#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The graph of a quadratic function has a y -itc,5q*t zngk12bq)b y-k-jqrntercept at $\mathrm{A}(0,24)$ and one of its x -intercepts is $\mathrm{B}(2,0)$ .
The x -coordinate of the vertex of the graph is 4 .
The equation of the quadratic function is in the form y=a $x^{2}+b x+c$ .
1. Write down the value of c .   
2. Find the value of a and the value of b .a =    b =   
3. Write down the coordinates of the second x -intercept of the function. (a,b) a =    b =   

参考答案:     查看本题详细解析

标记此题
18#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $f(x)=x^{2}+k x$ and g(x)=x+k , for $x \in \mathbb{R}$ , where k is a constant.
The graphs of y=f(x) and y=g(x) intersect at two distinct points.
Find the possible values of k .
参考答案:    

标记此题
19#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The line $ y=x+1 $ touches the graph of the function $ g(x)=2 x^{2}+k x+3 $ at one point. Find the possible values of k .      

参考答案:     查看本题详细解析

标记此题
20#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $f(x)=p-\frac{16}{x}$ , for $x \neq 0$ , where p is a constant.
The line y=x-p intersects the graph of y=f(x) at two distinct points.
Find the possible values of p .
参考答案:    

标记此题
21#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let $f(x)=3 x^{2}+12 x+9$ , for $x \in \mathbb{R}$ .
1. For the graph of f , find:
1. the y -intercept; (a,b) a =    b =   
2. the x -intercepts. (a,b) a =    b =    (c,d) c =    d =   

The function f can be written in the form $f(x)=a(x-h)^{2}+k$ .
2. Find the values of a, h and k . a =    h =    k =   
3. For the graph of f , write down:
1. the coordinates of the vertex;(a,b) a =    b =   
2. the equation of the axis of symmetry.

The graph of a function g is obtained from the graph of f by a reflection
in the x -axis, followed by a translation by the vector $\binom{0}{4}$ .   
4. Find g(x) , giving your answer in the form $g(x)=p x^{2}+q x+r$ .  (代数式) 

参考答案:     查看本题详细解析

标记此题
22#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let $f(x)=2 x^{2}+4 x+p$ , for x $\in \mathbb{R}$ , where p $\in \mathbb{Z}$ .
1. The equation f(x)=0 has two equal roots.
1. Write down the value of the discriminant of f .   
2. Show that p=2 .
2. For the graph of f , find:
1. the equation of the axis of symmetry.   
2. the coordinates of the vertex; (a,b) a =    b =   
3. Write down the solution to the equation f(x)=0 .   
4. The function f can be written in the form $f(x)=a(x-h)^{2}+k$ . Find the values of a, h and k . a =    h =    k =   
5. The graph of a function g is obtained from the graph of f by a reflection in the x -axis. Find the coordinates of the vertex of the graph of g . (a,b) a =    b =   

参考答案:     查看本题详细解析

标记此题
23#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let $f(x)=2 x^{2}-8 x+6$ , for x $\in \mathbb{R}$ .
1. Write down the value of f(0) .   
2. Solve the equation f(x)=0 .

The function f can be written in the form $f(x)=a(x-h)^{2}+k$ .      
3. Find the values of a, h and k .a =    h =    k =   
4. For the graph of f , write down:
1. the coordinates of the vertex;(a,b) a =    b =   
2. the equation of the axis of symmetry.

The graph of a function g is obtained from the graph of f by a reflection in the x -axis, followed by a translation by the vector $\binom{1}{3}$ .   
5. Find g(x) , giving your answer in the form $g(x)=p x^{2}+q x+r$ .  (代数式) 

参考答案:     查看本题详细解析

标记此题
24#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let f(x)=a(x+1)(x+5) ,5tal 76f 8fdibl c.*u:2k n v2g.ykooo for $ x \in \mathbb{R} $, where $ a \in \mathbb{Z}$ . The following diagram shows part of the graph of f .



The graph of f has x -intercepts at (p, 0) and (q, 0) , and a y -intercept at (0,-10) .
1. 1. Write down the value of p and the value of q .
2. Find the value of a .
2. Find the equation of the axis of symmetry.
3 . Find the coordinates of the vertex.

The graph of a function g is obtained from the graph of f by a reflection in the y -axis, followed by a translation by the vector $ \binom{0}{2}$ . The point $\mathrm{P}(-2,6)$ on the graph of f is mapped to point $ \mathrm{Q} $ on the graph of g .
4. Find the coordinates of Q .
参考答案:    

标记此题
25#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The quadratic equatio+o b*s. ral+pyn $ x^{2}-k x+(k-3)=0 $ has roots $ \alpha $ and$ \beta $ such that $\alpha^{2}+\beta^{2}=6$. Without solving the equation, find the possible values of the real number k .      

参考答案:     查看本题详细解析

标记此题
26#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { The quadratic equation } x^{2}-k x+(k-1)=0 \text { has roots } \alpha \text { and } \beta \text {. Without solving the equation, find the possible values of the real number } k \text { given that } \alpha^{2}+\beta^{2}=17 \text {. }$      

参考答案:     查看本题详细解析

标记此题
27#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A cannonball is fired from the top of a tower. The o9xw -a *li3d3eeazp(g3n0 z:ve wny/rate of change of the height, h , of the cannonball :ea9a nxw3p*wd ey3 (z3l-oeg zni0v/above the ground is modelled by

$h^{\prime}(t)=-4 t+20, t \geq 0$,

where h is in metres and t is the time, in seconds, since the moment the cannonball was fired.
1. Determine the time t at which the cannonball reached its maximum height.

After one second, the cannonball is 26 metres above the ground.   
2. 1. Find an expression for h(t) , the height of the cannonball above the ground at time t .  (代数式) 
2. Hence, determine the maximum height reached by the cannonball.   
3. Write down the height of the tower.   
4. Calculate the height of the cannonball 4 seconds after it was fired.

The cannonball hits its target on the ground n seconds after it was fired.   
5. Find the value of n .≈   
6. Determine the total time the cannonball was above the height of the tower.

A second cannonball is fired from exactly halfway up the tower, with the same projectile motion as the first cannonball.   
7. Given that both cannonballs land at the same time, determine the length of time between the first cannonball and the second cannonball being fired.   

参考答案:     查看本题详细解析

标记此题
28#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The axis of symmetry of the graph of a quadratic function has eq6c(r6uqab7l q uation $x=\frac{3}{2}$ .
1. Draw the axis of symmetry on the grid below.

The graph of the quadratic function intersects the x -axis at the point $\mathrm{P}$(-1,0) . There is a second point, $\mathrm{Q}$ , at which the graph of the quadratic function intersects the x -axis.
2. Mark and label P and Q on the grid above.

The graph of the quadratic function has equation $y=-x^{2}+b x+c$ , where b, c $\in \mathbb{Z}$ .
3. 1. Find the value of b and the value of c .
2. Find the coordinates of the vertex, M.
3. Draw the graph of the quadratic function on the grid above.
参考答案:    

标记此题
29#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $f(x)=2(x-1)^{2}-8$ , for x $\in \mathbb{R}$ .
1. Show that $f(x)=2 x^{2}-4 x-6$ .
2. For the graph of f :
1. write down the coordinates of the vertex;
2. write down the y -intercept;
3. find both x -intercepts.
3. Hence sketch the graph of f .

Let $g(x)=6 x^{2}$ , for $x \in \mathbb{R}$ .
The graph of f may be obtained from the graph of g using the following two transformations:
a compression of scale factor a in the y -direction, followed by
a translation of $\binom{h}{k}$ .
4. Find the values of a, h and k .
参考答案:    

标记此题
30#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Consider $ f(x)=\log _{k}\left(8 x-2 x^{2}\right)$ , for 00 . The equation f(x)=3 has exactly one solution. Find the value of k .   

参考答案:     查看本题详细解析

标记此题
31#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  When $p(x)=x^{2}-2 x+p$ is divided by x-r , the remainder is 4 .
Given that p, r $\in \mathbb{R}$ , find the largest possible value for p .   

参考答案:     查看本题详细解析

标记此题
32#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let $f(x)=16-x^{2}$ , for x $\in \mathbb{R}$ .
1. Find the x -intercepts of the graph of f .

The following diagram shows part of the graph of f .

Rectangle $\mathrm{ABCD}$ is drawn with $\mathrm{A} \& \mathrm{~B}$ on the x -axis and $\mathrm{C} \& \mathrm{D}$ on the graph of f .
Let $\mathrm{OA}=a$ . P (a,b) a =    b =    Q (c,d) c =    d =   
2. Show that the area of $\mathrm{ABCD}$ is 32 a-2 $a^{3}$ .  (代数式) 
3. Hence find the value of a>0 such that the area of ABCD is a maximum.

Let $g(x)=(x-4)^{2}+k$ , for x $\in \mathbb{R}$ , where k is a constant. $\frac{a \sqrt{b}}{c}$ a =    b =    c =   
4. Show that when the graphs of f and g intersect, $2 x^{2}-8 x+k=0$ .
5. Given that the graphs of f and g intersect only once, find the value of k .   

参考答案:     查看本题详细解析

标记此题
33#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  When $p(x)=x^{2}-2 x-ca$ is divided by (x-r) , the remainder is -5 . Given that c, r $\in \mathbb{R}$ , find the smallest possible value for c .   

参考答案:     查看本题详细解析

标记此题
34#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A quadratic function f can be written in the form f(x)gfv-dtg;x7 xkr: kc:ev/j6)j bh6n5d=p(x-1)(x-q) .
The graph of y=f(x) has axis of symmetry x=2 and y -intercept at (0,-3) .
1. Find the value of q .   
2. Find the value of p .

The line y=k x+6 is a tangent to the graph of y=f(x) .   
3. Find the possible values of k .      

参考答案:     查看本题详细解析

标记此题
35#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Consider the quadratic polyk6guogvqn 1z 63(lmyt *p1;l xnomial p(x)=2 k $x^{2}+15 k x+3 k+6$ , where k $\in \mathbb{R}$ .
1. Find an expression for the product of the roots of p(x) in terms of k .
2. Find the values of k for which p(x) has two distinct negative real roots.
参考答案:     查看本题详细解析

  • :
  • 总分:35分 及格:21分 时间:不限时
    未答题: 已答题:0 答错题:
    当前第 题,此次习题练习共有 35 道题
    本系统支持习题练习,作业与考试三大模式,作业考试自动评分,成绩排序一键导出,可设定动态变量同一试卷千人千题
    如果您对本系统感兴趣,想加入我们或者想进行任何形式的合作,请加微信 skysky1258

    浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

    GMT+8, 2024-12-26 16:47 , Processed in 0.143739 second(s), 91 queries , Redis On.