题库网 (tiku.one)

 找回密码
 立即注册

 

      

上传图片附件

未使用图片

小贴士: 允许的图片文件格式为: gif, jpg, jpeg, png, webp,上传完成后会在上方生成预览,用鼠标连续双击缩略图,或拖动缩略图,该图片就被绑定至本题,显示在题目下方

本次作答已使用

小贴士: 此栏目显示的是当前作答使用的所有图片,绑定到某一题目的图片同时会显示在该题目下方; 删除使用的图片会将其转移到<未使用图片>类别


习题练习:Geometry & Shapes



 作者: admin发布日期: 2024-07-09 18:13   总分: 57分  得分: _____________

答题人: 匿名未登录  开始时间: 24年07月09日 18:13  切换到: 整卷模式

标记此题
1#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram shows a circl7 u*knqm* n6rle with the centre O and radius 8 cm.



Points $\mathrm{A}$, $\mathrm{B}$ lie on the circle and $\mathrm{AO}$ $\mathrm{B}=1.4$ radians.
1. Find the length of the minor arc A B .    $cm^2$
2. Find the area of the shaded region.    $cm^2$

参考答案:     查看本题详细解析

标记此题
2#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram sh qr5i ic1(qeu50 p3i-iufnw.oows a circle with centre O and radius 10 cm.


Points $ \mathrm{A}$, $\mathrm{B}$ lie on the circle and $\mathrm{AO}$ $\mathrm{B}=2.2$ radians.
1. Find:
1. the length of the minor arc A B ;    cm
2. the perimeter of the shaded region.    cm
2. Find the area of the shaded region.    $cm^2$

参考答案:     查看本题详细解析

标记此题
3#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The diameter of a spherical object is 3 .6j*8za6ht j4b9 z*yq+tm nz4zwmozz$\times 10^{8} \mathrm{~cm}$ .
1. Write down the radius of the object.

The volume of the object can be expressed in the form $ \pi\left(a \times 10^{k}\right) \mathrm{cm}^{3} $ where $1 \leq a<10$ and k$ \in \mathbb{Z}$ .    $\times 10^8$
2. Find the value of a and the value of k . a =    k =   

参考答案:     查看本题详细解析

标记此题
4#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram shows aw 950npd+8 z4v0zpy +prfw aao circle with centre O and radius 8 cm.



Points $\mathrm{A}$, $\mathrm{B}$ lie on the circle and $\mathrm{AO} \mathrm{B}=2.7$ radians.
1. Find:
1. the length of the major arc A B ; ≈    cm
2. the perimeter of the shaded region. ≈    cm
2. Find the area of the shaded region. ≈    cm

参考答案:     查看本题详细解析

标记此题
5#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  In a triangle $ \mathrm{ABC}$, $\mathrm{AB}=6 \mathrm{~cm}$, $\mathrm{BC}=10 \mathrm{~cm}$ and $\mathrm{CBA}=70^{\circ}$ .
1. Find the area of the triangle. ≈    $cm^2$
2. Find AC.

Give your answers correct to 3 significant figures.≈    cm

参考答案:     查看本题详细解析

标记此题
6#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  In a triangle $ \mathrm{ABC}$, $\mathrm{AB}=4 \mathrm{~cm}$, $\mathrm{BC}=10 \mathrm{~cm}$ and $ \mathrm{CB} A=105^{\circ}$ .
1. Find the area of the triangle A B C .≈    $cm^2$
2. Find AC. ≈    cm

参考答案:     查看本题详细解析

标记此题
7#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram shows triangle ABCjw9(u (eqm) d 4kzfik1.




$\mathrm{AC}=14 \mathrm{~cm}, $$\mathrm{CBA}=115^{\circ}$, $\mathrm{BA} \mathrm{C}=38^{\circ} $.

1. Find BC. ≈    cm
2. Find the area of the triangle A B C .≈    $cm^2$

参考答案:     查看本题详细解析

标记此题
8#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A bronze sphere has a radiui7pmoebs2cp n*i/7b*qv(7 lw s of 10.5 $\mathrm{~cm}$ .
1. Find the volume of the sphere, expressing your answer in the form a $\times 10^{k}$, $1 \leq a<10 $ and $k \in \mathbb{Z}^{+}$ .

The sphere is to be melted down and remoulded into the shape of a cone with a height of 11.9 $\mathrm{~cm}$ .≈    $\times 10^3$cm
2. Find the radius of the base of the cone, giving your answer correct to 3 significant figures.≈    cm

参考答案:     查看本题详细解析

标记此题
9#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A sphere made out of menwv:cx2( gr.1 n0xu gold has a radius of 13.2 $\mathrm{~cm}$ .
1. Find the volume of the sphere, expressing your answer in the form a $\times 10^{k}$, 1 $\leq a<10$ and k $\in \mathbb{Z}^{+} $.

The sphere is to be melted down and remoulded into the shape of a cylinder with a height of 18.4 $\mathrm{~cm}$ .≈    $\times 10^3$cm
2. Find the radius of the base of the cylinder, giving your answer correct to 2 significant figures. ≈    cm

参考答案:     查看本题详细解析

标记此题
10#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram shows trianglwv+z9o0 cj8m ct/gk+d g:r3sxe $ \mathrm{ABC}$ , with $\mathrm{AB}=7 \mathrm{~cm}$,$ \mathrm{AC}=5 \mathrm{~cm} $, $ 0^{\circ}<\mathrm{BA} \mathrm{C}<90^{\circ}$ and $ \sin (\mathrm{BA} \mathrm{A})=\frac{4}{5}$



1. Find the area of triangle A B C . ≈    $cm^2$
2. Find $\cos (\mathrm{BA} C)$ .   
3. Find BC. $a\sqrt{b}$ ≈   

参考答案:     查看本题详细解析

标记此题
11#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram shows a right-pnd-*ho /iy+,i jioha rzqg,ux((+b;angled triangle $\mathrm{ABC}$ and a sector ABD of a circle with centre $\mathrm{A}$ . The point $\mathrm{E}$ lies on [AC] such that [BE] is perpendicular to [AC]. The region R is bounded by [DE], [BE] and arc BFD.




$\mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=13 \mathrm{~cm}, \mathrm{BC}=12 \mathrm{~cm}$

1. Find B A C , giving your answer in radians.≈   
2. Find the area of R .≈    $cm^2$

[/BE][/BE]

参考答案:     查看本题详细解析

标记此题
12#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram shows triangle ABCe cpx;:d. ,j0rjrjg mvq3hf(-.


1. Find BC.≈    cm
2. Find CBA, given that it is obtuse.≈    $^{\circ}$
3. Find the area of the triangle A B C .≈    $cm ^2$

参考答案:     查看本题详细解析

标记此题
13#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram shows triangle ABC.sb 8n+:w2+ xgpgzpoubr1 0r q;



1. Find A $\hat{C}$ B , given that it is acute.≈    $^{\circ}$
2. Find BC.≈    cm

参考答案:     查看本题详细解析

标记此题
14#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram showiv /d6fp haz/4s triangle $ \mathrm{PQR}$ , with $\mathrm{PQ}=10 \mathrm{~cm}$, $\mathrm{PR}=6 \mathrm{~cm}$ , $0^{\circ}<\mathrm{Q} \hat{\mathrm{P}} \mathrm{R}<90^{\circ}$ and $ \cos (\mathrm{Q} \hat{\mathrm{P}} \mathrm{R})=\frac{4}{5}$ .



1. Find $\sin (\mathrm{QP} R) $.   
2. Find the area of triangle P Q R .    $cm^2$
3. Find QR.a$\sqrt{b}$ ≈   

参考答案:     查看本题详细解析

标记此题
15#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  In a triangle $ \mathrm{ABC}$, $\mathrm{AB}=12 \mathrm{~cm}$ and $ \mathrm{AC}=15 \mathrm{~cm}$ . The area of the triangle is 80 $\mathrm{~cm}^{2}$ .
1. Find the two possible values for BÂC.≈      
2. Given that BÂC is obtuse, find BC.≈    cm

参考答案:     查看本题详细解析

标记此题
16#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\mathrm{ABCD} \text { is a quadrilateral where } \mathrm{AB}=9 \mathrm{~cm}, \mathrm{BC}=12 \mathrm{~cm}, \mathrm{CD}=11 \mathrm{~cm}, \mathrm{DA}=8.5 \mathrm{~cm} \text { and } \mathrm{AB} \mathrm{C}=90^{\circ} \text {. Find } \mathrm{AD} \hat{\mathrm{D}} \text {, giving your answer correct to the nearest degree. }$ ≈    $^{\circ}$

参考答案:     查看本题详细解析

标记此题
17#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram shows a circle with centre O and radiuzh8h9*teki x 6r5 ze8xs 5 cm.


Points $ \mathrm{A}$,$ \mathrm{B} $ lie on the circle and $ \mathrm{AO} \mathrm{B}=2.1 $ radians.
1. Find the length of:
1. minor arc A B ;    cm
2. chord A B .≈    cm
2. Find the area of the shaded region.≈    $cm ^2$

参考答案:     查看本题详细解析

标记此题
18#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram shows a circle with centre O and radius 7.2 c+ntfk- z:(n3 8ltv psem.


Points $\mathrm{A}, \mathrm{B}$ lie on the circle and $\mathrm{AO} \mathrm{B}=1.3$sv radians.
1. Find the length of:
1. minor arc A B ;   
2. chord A B .≈    cm
2. Find the area of the shaded region.≈    $cm ^2$

参考答案:     查看本题详细解析

标记此题
19#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { The app logo, for a mobile arcade game, is a sector of a circle of radius } 3 \mathrm{~cm} \text {, shown as shaded in the diagram below. The area of the logo is } 6 \pi \mathrm{cm}^{2} \text {. }$



1. Find, in radians, the measure of the angle AOB.   
2. Find the total length of the perimeter of the logo.   

参考答案:     查看本题详细解析

标记此题
20#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Cabin boy Jim is at the top of a clin qv.iy xdbr,tkc: i/g s+b05.ff on Tortuga Island, standing 100 $\mathrm{~m} $ above the sea level, and observes two ships in the Caribbean sea. The Black Pearl $(\mathrm{P})$ is at an angle of depression of $25^{\circ} $ and the Hispaniola $(\mathrm{H}) $ is at an angle of depression of $50^{\circ} $.
The following three dimensional diagram shows the foot of the cliff at $\mathrm{O}$ , Jim at $\mathrm{J}$ , two ships at $\mathrm{P}$ and $\mathrm{H}$ , and the angle $\mathrm{POH}=75^{\circ}$ .



Find the distance between the two ships, giving your answer correct to 3 significant figures. PH =    m

参考答案:     查看本题详细解析

标记此题
21#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { Consider a triangle with sides } \mathrm{AB}=10 \mathrm{~mm} \text { and } \mathrm{AC}=8 \mathrm{~mm} \text {. Given that the area of the triangle is } 24 \mathrm{~mm}^{2} \text {, find the possible values for the length of }[B C] \text {. }$      
[/B C]

参考答案:     查看本题详细解析

标记此题
22#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram shows ta2 t6q m3byz5v 5rarvg0he:, yriangle ABC.


The area of the triangle A B C is 22 $\mathrm{~cm}^{2} $.
1. Find A B .≈    cm
2. Find B C .≈    cm
3. Find CBA.≈    $^{\circ}$

参考答案:     查看本题详细解析

标记此题
23#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram 5i3i e,moxe*z shows a cell tower $ \mathrm{AB} 6.4 \mathrm{~m} $ tall on the roof of a commercial building. The angle of depression from $\mathrm{A} to a point \mathrm{C} $ on the horizontal ground is $49^{\circ}$. The angle of elevation of the top of the building from $\mathrm{C} is 45^{\circ}$ .


Find the height of the building. ≈    m

参考答案:     查看本题详细解析

标记此题
24#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram shows p)vd 2cdp sq7-nart of a circle with centre O and radius 5 cm.


Points $\mathrm{A}, \mathrm{B}$ lie on the circle, chord $\mathrm{AB}$ has a length of 8 $\mathrm{~cm}$ and $\mathrm{AO} \mathrm{B}=\theta$ .
1. Find the value of $ \theta$ , giving your answer in radians.≈   
2. Find the area of the shaded region.≈    $cm ^2$

参考答案:     查看本题详细解析

标记此题
25#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A loaf pan is made in th wz+.uejv ,uknv 5yp59e shape of a cylinder. The pan has a diameter of 24 cm and a 55uvvp 9 k.jz,y+uenwheight of 5 m.



1. Calculate the volume of this pan.

Gloria prepares enough bread dough to exactly fill the pan. The dough was in the shape of a sphere.≈    $cm ^3$
2. Find the radius of the sphere in $\mathrm{cm}$ , correct to one decimal place.

The bread was cooked in a hot oven. Once taken out of the oven, the bread was left in the kitchen. The temperature, T , of the bread, in degrees Celsius, ${ }^{\circ} \mathrm{C}$ , can be modelled by the function

$T(t)=a \times(1.51)^{-\frac{t}{3}}+21, \quad t \geq 0$,

where a is a constant and t is the time, in minutes, since the bread was taken out of the oven. When the bread was taken out of the oven its temperature was 205^{\circ} \mathrm{C} .≈    cm
3. Find the value of a .   
4. Find the temperature that the bread will be 10 minutes after it is taken out of the oven.

The bread can be eaten once its temperature drops to 35^{\circ} \mathrm{C} .≈    $C^{\circ}$
5. Calculate, to the nearest minute, the time since the bread was taken out of the oven until it can be eaten.
6. In the context of this model, state what the value of 21 represents.≈   

参考答案:     查看本题详细解析

标记此题
26#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram shows a right-7g( x).j3.tlhbzqeq yangled triangle ABC and a sector CBE of a circle with centre C. The point D lies on [AC] such that [BD] is )7 t3eg.lhy(zqbjqx.perpendicular to [AC]. The region R is bounded by [BD], [DE] and arc BFE.


Find the area of the shaded region R.≈    $cm ^2$[/BD][/BD]

参考答案:     查看本题详细解析

标记此题
27#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagra4g/0ihcyblc7.z c9j mm shows a circle with centre O and radius r cm.The circle is divided into three equal sectoccy7i4. gl0/j mhz cb9rs.


Points $\mathrm{A}, \mathrm{B}$ lie on the circle and $\mathrm{AO} \mathrm{B}=\theta$ radians.
1. Find the exact value of $\theta$ , giving your answer in terms of $\pi$ .

The area of the shaded sector $\mathrm{AOB} $ is $ 3 \pi \mathrm{cm}^{2}$ .   
2. Find the radius of the circle, r .   cm
3 . Find the length of the chord A B . ≈    cm

参考答案:     查看本题详细解析

标记此题
28#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { The triangle } A B C \text { is equilateral of side } 5 \mathrm{~cm} \text {. The point } D \text { lies on }[B C] \text { such that } D C=2 \mathrm{~cm} \text {. Find } \cos (C \hat{D A}) \text {. }$   

[/B C]

参考答案:     查看本题详细解析

标记此题
29#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  In a triangle $ \mathrm{ABC}$, $\mathrm{AB}=3 \mathrm{~cm}$, $\mathrm{BC}=5 \mathrm{~cm}$ and $\mathrm{ACB}=\frac{\pi}{6}$
1. Find, to three significant figures, the two possible lengths of [AC]      
2. Find the difference between the areas of the two possible triangles A B C .   

参考答案:     查看本题详细解析

标记此题
30#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram295 odn6f3eo qhvlf6q shows triangle ABC and sector ACD of a circle with centre C.o935 h6fleqvfo2nqd6


$\mathrm{AC}=5 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm} $, the area of triangle $\mathrm{ABC}=10 \sqrt{3} \mathrm{~cm}^{2}$ .

1. Find AĈB.   
2. Find the exact area of sector ACD.   

参考答案:     查看本题详细解析

标记此题
31#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { The following diagram shows triangle } \mathrm{ABC} \text {, with } \mathrm{AB}=9 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm} \text {, and } \mathrm{ABC}=\frac{\pi}{3} \text {. }$




1. Show that $\mathrm{AC}=3 \sqrt{7} \mathrm{~cm}$ .   
2. The shape in the following diagram is formed by adding a semicircle with diameter [A C] to the triangle.



Find the exact perimeter of this shape.   

参考答案:     查看本题详细解析

标记此题
32#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { The following diagram shows triangle } \mathrm{ABC} \text {, with } \mathrm{AB}=9 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm} \text {, and } \mathrm{ABC}=\frac{\pi}{3} \text {. }$




1. Show that $\mathrm{AC}=3 \sqrt{7} \mathrm{~cm}$ .   
2. The shape in the following diagram is formed by adding a semicircle with diameter [A C] to the triangle.



Find the exact perimeter of this shape.   

参考答案:     查看本题详细解析

标记此题
33#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { A triangle } \mathrm{ABC} \text { has } a=10.2 \mathrm{~cm}, b=17.5 \mathrm{~cm} \text { and area } 32 \mathrm{~cm}^{2} \text {. Find the largest possible perimeter of triangle } \mathrm{ABC} \text {. }$   

参考答案:     查看本题详细解析

标记此题
34#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram shows *s)j riu uiv e9):rg0jhbpy;5 vf u3f:a radioactivity warning symbol made out of a circle in the centre :p bregi 3*jhvu9)j)rsuf v0u;: 5ify and three equal blades.

$\text { Given that } \mathrm{OA}=2 \mathrm{~cm}, \mathrm{AB}=1 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm} \text {, and } \mathrm{CO} \mathrm{D}=30^{\circ} \text {, find the area of the symbol. }$   

参考答案:     查看本题详细解析

标记此题
35#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The diagram below shows a sector of a circle w,dmiim 0e8. d*l9fqfbk2bo w4 ith radius r where $\mathrm{AO} \hat{\mathrm{B}}=x $ radians and the length of the $\operatorname{arc}$ A B is $\frac{4}{x} \mathrm{~cm}$ .


$\text { Given that the area of the sector is } 27 \mathrm{~cm}^{2} \text {, find the length of the arc } A B \text {. }$   

参考答案:     查看本题详细解析

标记此题
36#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram shows th;lyad7yjehgf2a 4fdo;go v37o*4p- qs7b or+ ree cities $\mathrm{A}$, $\mathrm{B}$ and $\mathrm{C}$ . City $\mathrm{B}$ is 70 $\mathrm{~km}$ from $\mathrm{A}$ , on a bearing of $130^{\circ}$ . City $ \mathrm{C}$ is 40 $\mathrm{~km} $ from City $\mathrm{B}$ , on bearing of $75^{\circ}$ .



1. Find CBA.   
2. Find the distance from City A to C . ≈   
3. If you wanted to travel from city A directly to City C, find the bearing you would need to travel. ≈   
4. Find the area enclosed by connecting the three cities in a triangle ABC.   

参考答案:     查看本题详细解析

标记此题
37#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagramby2 klpm)* dp1k3lk5w shows quadrilateral ABCD.



$\mathrm{AB}=12 \mathrm{~cm}, \mathrm{AD}=4 \mathrm{~cm}, \mathrm{AC} B=85^{\circ}, \mathrm{CBA}=38^{\circ}$ .

1. Find A C .≈   
2. Find the area of triangle A B C .

The area of triangle A B C is three times bigger than the area of triangle A C D .≈   
3. Find the acute angle CÂD.   
4. Find C D .≈   

参考答案:     查看本题详细解析

标记此题
38#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram shows 5o90ewm5jy s striangle $ \mathrm{ABC}$ . Point $\mathrm{D}$ lies on [AC] so that [DB] bisects CBEA. The area of the triangle A B C is 3 $\mathrm{~cm}^{2}$ .



$\mathrm{AB}=2 \sqrt{7} \mathrm{~cm}, \mathrm{BC}=x \mathrm{~cm}$ , and $\mathrm{CB} \mathrm{D}=\theta$ , where $\sin \theta=\frac{3}{4}$
Find the value of x in the form of $\frac{a}{b}$ where a and b are positive integers.   

参考答案:     查看本题详细解析

标记此题
39#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
$\text { A right cylinder has height } h \mathrm{~mm} \text { and diameter } x \mathrm{~mm} \text {. The volume of this cylinder is equal to } 45 \mathrm{~mm}^{3} \text {. }$



The total surface area, A , of the cylinder can be expressed as $A=\frac{\pi}{2} x^{2}+\frac{k}{x} $.
1. Find the value of k .
2. Find the value of x that makes the total surface area a minimum.
参考答案:    

标记此题
40#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The diagram below shows a circle of radius 9 cm. The points A, B,h9g/8v r2rb 7x4naeyr C and D lie on the circlxr venb/84hagr 9ry 72e.



1. Find A C . ≈   
2. 1. Find DĈA.≈   
2. Hence find A C $\hat{B}$ .≈   
3. Find the area of triangle A C D .≈   
4. Hence, or otherwise, find the total area of the shaded region.   

参考答案:     查看本题详细解析

标记此题
41#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Consider the following diadco-: ;t fj1il u*-vyq4 mxib7gram.




The sides [A B] and [B C] of the isosceles triangle A B C have lengths 5 $\mathrm{~cm}$ and the third side [A C] has length 6 $\mathrm{~cm}$ . The midpoint of [A C] is denoted by $\mathrm{M}$ . The circular arc $\mathrm{AC}$ has centre, G , the midpoint of [BM].
1. 1. Find A G .   
2. Find MGA in radians.≈   
2. Find the area of the shaded region.≈   

[/BM][/B C]

参考答案:     查看本题详细解析

标记此题
42#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Jack sets out for a horse ride from h xf/jo t :1nrhoi4m28ris family ranch at point $\mathrm{A} $. He rides at an average speed of 6.3$ \mathrm{~km} / \mathrm{h} $ for 28 minutes, on a bearing of $40^{\circ}$ from the ranch, until he stops for a break near a spring at point B.
1. Find the distance from point $\mathrm{A}$ to point $\mathrm{B}$ .   

$\text { Jack leaves point } \mathrm{B} \text { on a bearing of } 112^{\circ} \text { and continues to ride for a distance of } 5.8 \mathrm{~km} \text { until he reaches a river at point } \mathrm{C} \text {. }$


2. 1. Show that $A \hat{B}$ C is $108^{\circ}$ .   
2. Find the distance from point A to point C . ≈   
3. Find BĈA.

Jack's brother John wants to ride a horse directly from the ranch to meet Jack at point $\mathrm{C} $.   
4. Find the bearing that John must take to point $\mathrm{C} $.

John rides at an average speed of 12.9 $\mathrm{~km} / \mathrm{h}$ .   
5. Find, to the nearest minute, the time it takes for John to reach point $\mathrm{C}$ .≈    minutes

参考答案:     查看本题详细解析

标记此题
43#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The diagram below shows the cross section of a cylindrical pipe,md/yzw3) 7lg p 80 cm in length, carrying wylw3p )dm7zg /ater. The pipe has a radius of 15 cm.


The pipe is not at full capacity, such that the chord length of the water level [AB] is20 cm. Find the volume of water in the pipe.   

参考答案:     查看本题详细解析

标记此题
44#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagra(vp9z5 ap g w0reg2, rhrig,z7m shows a circular crop field.


The circle has centre O and a radius of 400 $\mathrm{~m}$ , and the points $\mathrm{A}$, $\mathrm{B}$, $\mathrm{C}$ and $\mathrm{D}$ lie on the circle. The angle $\mathrm{AOB}$ is 1.6 radians.
1. Find the length of chord A B .≈   
2. Find the area of triangle A O B .

The angle BOC is 2.5 radians.≈   
3. Find the length of the minor arc AC.≈   
4. Find the area of the shaded region.

The shaded region is to be planted with corn. Corn seeds are sold in bags which cost 140 dollars each. One bag is enough for seeding 8960 $\mathrm{~m}^{2}$ .≈   
5. Find the cost of the corn seeds.   

参考答案:     查看本题详细解析

标记此题
45#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  1. Given that $\theta=18^{\circ}$ satisfies the equation 4 $\sin ^{2} \theta+2 \sin \theta-1=0$ , find the value of $ \sin 18^{\circ}$ .   
2. Hence find the value of $\cos 36^{\circ}$ .   
The following diagram shows the triangle $\mathrm{ABC}$ where $ \mathrm{AB}=4 \mathrm{~cm}, \mathrm{BC}=5 \mathrm{~cm}$ and CBA=$36^{\circ}$ .

$\text { 3. Find } \mathrm{AC} \text { in the form } \sqrt{a+b \sqrt{5}} \mathrm{~cm} \text { where } a, b \in \mathbb{Z} \text {. }$

参考答案:     查看本题详细解析

标记此题
46#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The diagram below showxi pv. w rmm/il576h4miiu1:w st3 co5s a fenced triangular enclosure in the middle of a grassy field whs i3c/w:.i1m6it vom45mr lx7wp5u ihere $\mathrm{AC}=3 \mathrm{~m}, \mathrm{DC}=2 \mathrm{~m}, \mathrm{CB} \mathrm{A}=\alpha $ radians and $ \mathrm{AC} \hat{\mathrm{CB}}=\frac{\pi}{3} $ radians. One end of a rope is attached at point D on the outside edge of the enclosure, and the other end is attached to a goat G . Given that the rope is 6 $\mathrm{~m}$ long and the area of field outside the enclosure that the goat is able to graze is 74 $\mathrm{~m}^{2}$ , find the value of $\alpha$ .≈   




参考答案:     查看本题详细解析

标记此题
47#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  1. Expand and simplify f5bnq-u4tj,2.ticdy $(1+\sqrt{3})^{2} $.  
2. By writing $75^{\circ} $ as $30^{\circ}+45^{\circ}$ , find the value of $\cos 75^{\circ} $.

The following diagram shows the triangle $\mathrm{ABC}$ where $\mathrm{BC}=\sqrt{6}$, $\mathrm{CA}=2 $ and $ \mathrm{A} \hat{\mathrm{C} B}=75^{\circ}$ .   

$\text { 3. Find } \mathrm{AB} \text { in the form } a+\sqrt{b} \text { where } a, b \in \mathbb{Z} \text {. }$   

参考答案:     查看本题详细解析

标记此题
48#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  In a triangle $ \mathrm{ABC}, \mathrm{AB}=2 \mathrm{~cm}, \mathrm{CBA}=\frac{\pi}{4}$ and$ \mathrm{BA} \hat{\mathrm{A}} \mathrm{C}=\theta$.
1. Show that $\mathrm{AC}=\frac{2}{\cos \theta+\sin \theta} $. AC =  (代数式) 
2. Given that $\mathrm{AC} $ has a minimum value, find the value of $ \theta $ for which this occurs.   

参考答案:     查看本题详细解析

标记此题
49#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
In a triangle $\mathrm{ABC}, \mathrm{BA} \mathrm{A} C=60^{\circ}, \mathrm{AB}=(1-x) \mathrm{cm}$, $\mathrm{AC}=(x+3)^{2} \mathrm{~cm}$,$-3\lt x\lt1$
1. Show that the area, A $\mathrm{~cm}^{2}$ , of the triangle is given by

A=$\frac{\sqrt{3}}{4}\left(9-3 x-5 x^{2}-x^{3}\right)$ .

2. 2a Calculate $ \frac{\mathrm{d} A}{\mathrm{~d} x} $.
2b Verify that $\frac{\mathrm{d} A}{\mathrm{~d} x}=0 $ when $x=-\frac{1}{3}$ .
3. 3a Find $\frac{\mathrm{d}^{2} A}{\mathrm{~d} x^{2}} $ and hence verify that $x=-\frac{1}{3}$ gives the maximum area of triangle A B C .
3b Calculate the maximum area of triangle A B C .
3c Find the length of [B C] when the area of triangle A B C is a maximum.

[/B C]
参考答案:    

标记此题
50#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
1. Find the set of values of h that satisfy the inequality 2$ h^{2}-3 h-14>0 $.
2. The triangle A B C is shown in the following diagram.
$\text { Given that } \cos \theta>0.25 \text {, find the range of possible values of } a \text {. }$
参考答案:    

标记此题
51#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Peggy owns a rectangrwmks6 n(*v n bf;ohjs, v66r+ular field, 12 $\mathrm{~m} $ by 5 $\mathrm{~m}$ . Peggy attaches a rope to a metal post at the upper left corner of her field, and attaches the other end to her cow Daisy.
1. Given that the rope is 6 $\mathrm{~m} $ long, calculate the percentage of Peggy's field that Daisy is able to graze. Give your answer correct to the nearest percent.
2. Peggy replaces Daisy's rope with another one of length $\alpha \mathrm{m}, 5<\alpha<12$ , so that Daisy can now graze exactly three quarters of Peggy's field.
Show that $\alpha$ satisfies the equation

5 $\sqrt{\alpha^{2}-25}+\alpha^{2} \arcsin \left(\frac{5}{\alpha}\right)=90$

3. Find the value of $\alpha$ .
参考答案:    

标记此题
52#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
In a triangle $ \mathrm{XYZ}, \mathrm{XY}=9 \mathrm{~cm}, \mathrm{YZ}=x \mathrm{~cm}, \mathrm{XZ}=y \mathrm{~cm} $ and $\mathrm{XY} \mathrm{Y}=45^{\circ}$ .
1. Using the cosine rule, show that $x^{2}-9 \sqrt{2} x+81-y^{2}=0$.

Consider the possible triangles with $\mathrm{XZ}=7 \mathrm{~cm}$ .
2. Calculate the two corresponding values of Y Z .
3. Hence find the area of the smaller triangle.

Consider the case where y , the length of [X Z] , is not fixed at $ 7 \mathrm{~cm}$.
4. Find the range of values of y for which it is possible to form two triangles.
参考答案:    

标记此题
53#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The diagram below shows two circles with centres at t c1d27h:s-kcqiou 0ww3yp sf, he points A and B and radii 3r and 2r, respecti2 p0ukw,sdcqwhy1si o :7- fc3vely. The point B lies on the circle with centre A. The circles intersect at the points C and D.



Let $\alpha$ be the measure of the angle CAD and $\theta $ be the measure of the angle CBD in radians.
1. Find an expression for the shaded area in terms of $ \alpha, \theta$ and r .
2. Show that $ \alpha=4 \arcsin \frac{1}{3}$ .
3. Hence find the value of r given that the shaded area is equal to 16 $\mathrm{~cm}^{2}$ .
参考答案:    

标记此题
54#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Farmer Edward owns a triangular field withy q0p-92qjwut ratio of the sides 15: 15: 15 $\sqrt{2}$ . Edward attaches a rope to a wooden post at the right angle corner of his field, and attaches the other end to his cow Gertie.
1. Given that the rope is 10 $\mathrm{~m}$ long, calculate the percentage of Edward's field that Gertie is able to graze. Give your answer correct to the nearest percent.

Edward replaces the rope with another one, this time of length b metres, 102. Show that b satisfies the equation

$b^{2}\left[\frac{\pi}{4}-\arccos \left(\frac{15 \sqrt{2}}{2 b}\right)\right]+\left(\frac{15 \sqrt{2}}{2}\right) \sqrt{b^{2}-\frac{225}{2}}=101.25$ .

3. Find the value of b . Give your answer correct to two decimal places.
参考答案:    

标记此题
55#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
A water truck tank which is 3 metres 8:km-s4gz /-t(cfwy t-uh ;zza arqx ,long has a uniform cross-section in the shape of a major segment. The tank is divided into two equal parts and is partially filled with water as shown in the following diagram of the cross-section. The centre of the circle is O, the angle AOB is α radians, and the angle AOFzf k z4x tu h/-- y,w(caa-:smgzqt8r; is β radians.

1. Given that $\alpha=\frac{\pi}{4}$ , calculate the amount of water, in litres, in the right part
of the water tank. Give your answer correct to the nearest integer.
2. Find an expression for the volume of water V , in $\mathrm{m}^{3}$ , in the left part of the water tank in terms of $\beta$ .

The left part of the tank is now being filled with water at a constant rate of 0.001 $\mathrm{~m}^{3}$ per second.
3. Calculate $\frac{\mathrm{d} \beta}{\mathrm{d} t}$ when $\beta=\frac{3 \pi}{5}$. Round your answer to 3 significant figures.
4. Calculate the amount of time it will take for the left part of the tank to be fully filled with water. Give your answer in minutes and correct to the nearest integer.
参考答案:    

标记此题
56#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
In a triangle $\mathrm{ABC}$ ,

$\begin{array}{l}
5 \sin (\mathrm{ABC})-6 \cos (\mathrm{B} \hat{\mathrm{CA}})=7 \\
6 \sin (\mathrm{B} \hat{\mathrm{C}} \mathrm{A})-5 \cos (\mathrm{ABC})=\sqrt{2}
\end{array}$

1. Show that $\sin (\mathrm{ABC}+\mathrm{B} \hat{\mathrm{BA}})=\frac{1}{6}$ .

James claims that C A B can have two possible values.
2. Show that James is wrong by proving that CÂB has only one possible value.
参考答案:    

标记此题
57#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
This question ask you to investigate the relationship between thpp/oac t* ) 6rj1*wuuhe number of sides and the area of an enclosure with a giveo jp6ra p uh/ctw**u)1n perimeter.
A farmer wants to create an enclosure for his chickens, so he has purchased 28 meters of chicken coop wire mesh.
1. Initially the farmer considers making a rectangular enclosure.
1. Complete the following table to show all the possible rectangular enclosures with sides of at least $4 \mathrm{~m} $ he can make with the 28$ \mathrm{~m} $ of mesh. The sides of the enclosure are

2. What is the name of the shape that gives the maximum area?

The farmer wonders what the area will be if instead of a rectangular enclosure he uses an equilateral triangular enclosure.
2. Show that the area of the triangular enclosure will be $\frac{196 \sqrt{3}}{9}$ .

Next, the farmer considers what the area will be if the enclosure has the form of a regular pentagon. The following diagram shows a regular pentagon.

Let O be the centre of the regular pentagon. The pentagon is divided into five congruent isosceles triangles and angle $\mathrm{A} \widehat{O}$ B is equal to $ \theta $ radians.
3. 1. Express $\theta$ in terms of $\pi$ .
2. Show that the length of $\mathrm{OA}$ is $\frac{14}{5} \operatorname{cosec}\left(\frac{\pi}{5}\right) \mathrm{m}$.
3. Show that the area of the regular pentagon is $\frac{196}{5} \cot \left(\frac{\pi}{5}\right) \mathrm{m}^{2} $.

Now, the farmer considers the case of a regular hexagon.
4. Using the method in part (c), show that the area of the regular hexagon is

$\frac{196}{6} \cot \left(\frac{\pi}{6}\right) \mathrm{m}^{2}$

The farmer notices that the hexagonal enclosure has a larger area than the pentagonal enclosure. He considers now the general case of an n -sided regular polygon. Let $ A_{n} $ be the area of the n -sided regular polygon with perimeter of 28 $\mathrm{~m} $.
5. Show that $A_{n}=\frac{196}{n} \cot \left(\frac{\pi}{n}\right)$ .
6. Hence, find the area of an enclosure that is a regular 14 -sided polygon with a perimeter of 28 $\mathrm{~m}$ . Give your answer correct to one decimal place.
7. 1. Evaluate $\lim _{n \rightarrow \infty} A_{n}$ .
2. Interpret the meaning of the result of part $(\mathrm{g}) (i)$.
参考答案:    

  • :
  • 总分:57分 及格:34.2分 时间:不限时
    未答题: 已答题:0 答错题:
    当前第 题,此次习题练习共有 57 道题
    本系统支持习题练习,作业与考试三大模式,作业考试自动评分,成绩排序一键导出,可设定动态变量同一试卷千人千题
    如果您对本系统感兴趣,想加入我们或者想进行任何形式的合作,请加微信 skysky1258

    浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

    GMT+8, 2024-11-22 01:12 , Processed in 0.260226 second(s), 135 queries , Redis On.