题库网 (tiku.one)

 找回密码
 立即注册

 

      

上传图片附件

未使用图片

小贴士: 允许的图片文件格式为: gif, jpg, jpeg, png, webp,上传完成后会在上方生成预览,用鼠标连续双击缩略图,或拖动缩略图,该图片就被绑定至本题,显示在题目下方

本次作答已使用

小贴士: 此栏目显示的是当前作答使用的所有图片,绑定到某一题目的图片同时会显示在该题目下方; 删除使用的图片会将其转移到<未使用图片>类别


习题练习:Trigonometric Functions



 作者: admin发布日期: 2024-07-13 00:25   总分: 65分  得分: _____________

答题人: 匿名未登录  开始时间: 24年07月13日 00:25  切换到: 整卷模式

标记此题
1#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { Let } f(x)=a \sin b x \text {, for } x \in \mathbb{R} \text {. The following diagram shows part of the graph of } f \text {. }$


1. 1. Write down the amplitude of f .   
2. Find the value of a .   
2. 1. Write down the period of f .   
2. Find the value of b .   

参考答案:     查看本题详细解析

标记此题
2#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let f(x)=a $\cos b x$ , for $x \in \mathbb{R}$ , where b>0 .
Part of the graph of f is shown on the diagram below.

1. Find the value of a .   
2. Find:
1. the period of f ;   
2. the value of b .   

参考答案:     查看本题详细解析

标记此题
3#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let f(x)=$a \cos b x+d$ , for $x \in \mathbb{R}$ , where b>0 . Part of the graph of f is shown on the diagram below.



1. Find the value of a .   
2. 1. Write down the period of f .   
2. Find the value of b .   
3. Find the value of d .   

参考答案:     查看本题详细解析

标记此题
4#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram shows the curve y=a cos (k(x-d))+c whek(hskc .cs 3s0re a, k, d and c are all positive constants. The curve has a minimum point at (1.5,2) and as .k3csh0s(ck maximum point at (3.5,7) .



1. Write down the value of a and the value of c . a =    c =   
2. Find the value of k .   
3. Find the smallest possible value of d , given d>0 .   

参考答案:     查看本题详细解析

标记此题
5#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Given that $\sin x=\frac{3}{5}$ , where x is an acute angle, find:
1. cos x   
2. sin 2 x ;   
3. cos 2 x .   

参考答案:     查看本题详细解析

标记此题
6#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let sin x=$\frac{2}{3}$ , where x is obtuse.
1. Find cos x .   
2. Find cos 2 x .   

参考答案:     查看本题详细解析

标记此题
7#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let f(x)=3 $\sin (\pi x)$+1 .
1. Write down the amplitude of f .
2. Find the period of f .
3. On the following grid, sketch the graph of f , for 0 $\leq x \leq 4 $.
参考答案:    

标记此题
8#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let f(x)=p $\sin (q x)+r$ , for $x \in \mathbb{R} $.
Part of the graph of f is shown on the diagram below.

The graph of f has a minimum at $\mathrm{A}(3,-1)$ and a maximum at $\mathrm{B}(9,5)$ .
1. 1. Find the period of f .   
2. Hence find the value of q .   
2. Find the values of:
1. p ;   
2. r .   
3. Solve f(x)=4 , for 0 $\leq x \leq 15$ .      

参考答案:     查看本题详细解析

标记此题
9#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram sho8a4bf1 8ksm esku,z c (efav4)ws the curve y=a sin (k(x-d))+c where a, k, d and c are all positive constants. The curve has a minimum point at (1.5,1) and a m kac)kbv 84fus,zeem(8f1as4aximum point at (3,7) .



1. Write down the value of a and the value of c . a =    c =   
2. Find the value of k .   
3. Find the smallest possible value of d , given d>0 .   

参考答案:     查看本题详细解析

标记此题
10#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let $f(x)=\sin \left(x+\frac{\pi}{6}\right)+q$ . The graph of f passes through the point $\left(\frac{\pi}{3}, 5\right)$ .
1. Find the value of q .   
2. Find the maximum value of f .

Let $g(x)=\sin x$ . The graph of g is translated to the graph of f by the vector $\binom{a}{b}$ .   
3. Write down the values of a and b . a =    b =   

参考答案:     查看本题详细解析

标记此题
11#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { Solve } \sqrt{3} \tan x+1=0 \text {, for } 0 \leq x \leq \pi \text {. }$   

参考答案:     查看本题详细解析

标记此题
12#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The height, h metres, of a seat on a Ferrisovb jz7c+czwfgx4+i+4-(trr:v ; htk)jn vx3 wheel after t minutes is given by ;t )vhc :rgtzcnvx4+3i-w47r+ j ojvb(+xfk z

$h(t)=-23.5 \cos (0.4 t)+25, \text { for } t \geq 0 \text {. }$

1. Find the initial height of the seat.

Once a passenger's seat is more than 30 m above the ground, there are no trees in view and they can take unobstructed photographs of a nearby city.   
2. Given that passengers only complete one rotation on the Ferris wheel, calculate how long they can take unobstructed photographs of the nearby city.   

参考答案:     查看本题详细解析

标记此题
13#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { Solve } \frac{\sin 2 x}{\cos x}-1=0 \text {, for } \frac{\pi}{2} \leq x \leq \pi \text {. }$   

参考答案:     查看本题详细解析

标记此题
14#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Given that sin x=$\frac{4}{5}$ , where x is an obtuse angle, find the value of:
1. cos x   
2. cos 2 x ;   
3. tan 2 x .   

参考答案:     查看本题详细解析

标记此题
15#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The Singapore Flyer is a giant observation wheel in Singapore with diameter of 1n)4wbg; rs 7hp50 metres. The wheel rotates at a constant speed and completes one rotation in 32 minut7p;wr4 hbgs)nes. The bottom of the wheel is d metres above the ground.


A seat starts at the bottom of the wheel.
1. After 16 minutes, the seat is 165 metres above the ground. Find d .   

After t minutes, the height of the seat above the ground is given by

$h(t)=90+a \cos \left(\frac{\pi}{16} t\right), \text { for } 0 \leq t \leq 64 $.

2. Find the value of a .   
3. Find when the seat is 60 metres above the ground for the third time.    min

参考答案:     查看本题详细解析

标记此题
16#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Given that sin x=$\frac{2}{3} $, for $ \frac{\pi}{2} \leq x \leq \pi$, find the value of:
1. cos x ≈   
2. tan 2 x .≈   

参考答案:     查看本题详细解析

标记此题
17#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A function is defined by f(x)=a cos (k x)+cw )p1erx; 0qno z5dmul rij)3 *olv):w , for $-\pi \leq x \leq \pi $, where k>0 . Part of the graph of y=f(x) is shown on the diagram below.

1. Find the value of:
1. a ;   
2. k ;   
3. c .   
2. Solve f(x)=2 , for 0$ \leq x \leq \pi$ .         

参考答案:     查看本题详细解析

标记此题
18#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let f(x)=a sin (k(x-d))+c , f,ckk5kl06,ble-a v ajor $1 \leq x \leq 7$.
The graph of f is shown on the diagram below.

The graph of f has a maximum at $ \mathrm{A}(2,5) $ and a minimum at $\mathrm{B}(4,1)$ .
1. Find the value of:
1. a ;   
2. c.   
2. 1. Find the value of k .   
2. Find the smallest possible value of d , given d>0 .

The graph of f is translated by a vector $\binom{0}{b}$ to give the graph of a function g such that g(x)=3 has only one solution in the given domain.   
3. Find the value of b .   

参考答案:     查看本题详细解析

标记此题
19#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $f(x)=\sin \left(\frac{\pi}{3} x\right)+\cos \left(\frac{\pi}{3} x\right)$ , for $0 \leq x \leq 8 $.
1. Find the values of x where f has a positive rate of change.

The function f can be written in the form $f(x)=a \cos \left(\frac{\pi}{3}(x-d)\right)$ where $6 \leq d \leq 9$ .
2. Find the value of:
1. a ;
2. d .
3. Solve f(x)=1 , for $0 \leq x \leq 8$ .
参考答案:    

标记此题
20#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { Solve the equation } \cos 2 x-\sin ^{2} x=\cos ^{2} x+3 \cos x \text {, for } 0 \leq x \leq 2 \pi \text {. }$      

参考答案:     查看本题详细解析

标记此题
21#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The expression 8 sin x cos x cq jbgnjjb;8- /an be written in the form p sin q x .
1. Find the value of p and the value of q . p =    q =   
2. Hence, or otherwise, solve the equation 8 sin x cos x=2 $\sqrt{3}$ , for $\frac{\pi}{4} \leq x \leq \frac{\pi}{2}$ .   

参考答案:     查看本题详细解析

标记此题
22#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram sh3lspck-5hul . ows triangle A B C . Point D lies on [A C] so that [DB] bisects CEAA. The area of the triangle A B C l3uh.c 5k-psl is 3$ \mathrm{~cm}^{2}$ .


$\mathrm{AB}=2 \sqrt{7} \mathrm{~cm}, \mathrm{BC}=x \mathrm{~cm}$ , and $\mathrm{CBD}=\theta$ , where $ \sin \theta=\frac{3}{4} $ Find the value of x in the form of $ \frac{a}{b}$ where a and b are positive integers. x =   

参考答案:     查看本题详细解析

标记此题
23#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
$\text { Find all solutions to the equation } \tan x-\sin 2 x=0 \text { where } 0^{\circ} \leq x \leq 360^{\circ} \text {. }$
参考答案:    

标记此题
24#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let f(x)=3 cos (2 x)+5 , for lu. usox,v,)nfv1y .e $x \in \mathbb{R}$ .
The range of f is $p \leq f(x) \leq q$ .
1. Find the value of p and the value of q .

Let g(x)=4 f(3 x) , for x $\in \mathbb{R}$ .
2. Find the range of g .

The function g can be written in the form g(x)=12 cos (k x)+c .
3. 1. Find the value of k and the value of c .
2. Find the period of g .

The equation g(x)=10 has two solutions for $\frac{2 \pi}{3} \leq x \leq \pi $.
4. Find both solutions.
参考答案:    

标记此题
25#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { Given that } \cos x=\frac{3}{4} \text {, where } 0 \lt x \lt \frac{\pi}{2} \text {, find the value of } \sin 4 x \text {. }$   

参考答案:     查看本题详细解析

标记此题
26#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { Solve } \log _{\sqrt{3}}(\sin x)-\log _{\sqrt{3}}(\cos x)=1 \text {, for } 0 \lt x \lt \frac{\pi}{2} \text {. }$   

参考答案:     查看本题详细解析

标记此题
27#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Consider the function f(6c qsaft)5xdqq z++u- x)=sin x , for $x \in \mathbb{R}$ , where x is in radians.
1. Write down:
1. the maximum value of f ;
2. the smallest positive value of x for which the maximum of f occurs.

Let $g(x)=2 \sin \left(x+\frac{\pi}{4}\right)$ , for $ x \in \mathbb{R}$ , where x is in radians.
2. 1. Determine the two transformations the graph of f undergoes to form the graph of g .
2. Hence find the maximum value of g and the smallest positive value of x for which this maximum occurs.

Let $h(x)=\frac{4}{2 \sin \left(x+\frac{\pi}{4}\right)-3}$, for $x \in \mathbb{R}$, where x is in radians.
3. Determine if the graph of h has a vertical asymptote. Justify your answer.
4. Find the range of h .
参考答案:    

标记此题
28#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
$\text { The following diagram shows the graph of } f(x)=a \sin k x+c \text {, for } 0 \leq x \leq 16 \text {. }$



The graph of f has a minimum at $\mathrm{P}(4,8)$ and a maximum at $\mathrm{Q}(12,16)$ .
1. 1. Find the value of c .
2. Show that $k=\frac{\pi}{8}$ .
3. Find the value of a .

The graph of g is obtained from the graph of f by a translation of $\binom{d}{0} $.
The minimum point on the graph of g has coordinates (6.5,8) .
2. 1. Write down the value of d .
2. Find g(x) .

The graph of g changes from concave-up to concave-down when x=\nu .
3. 1. Find $\nu$ .
2. Hence, or otherwise, find the maximum positive rate of change of g .
参考答案:    

标记此题
29#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  1. Given that $\theta=18^{\circ}$ satisfies the equation $4 \sin ^{2} \theta+2 \sin \theta-1=0$ , find the value of $\sin 18^{\circ}$ .   
2. Hence find the value of $\cos 36^{\circ}$ .   

The following diagram shows the triangle ABC where $ \mathrm{AB}=4 \mathrm{~cm}, \mathrm{BC}=5 \mathrm{~cm}$ and $\mathrm{CBA}=36^{\circ}$ .

$\text { 3. Find } \mathrm{AC} \text { in the form } \sqrt{a+b \sqrt{5}} \mathrm{~cm} \text { where } a, b \in \mathbb{Z} \text {. }$   

参考答案:     查看本题详细解析

标记此题
30#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Consider the function )8ug w eop-6og $f(x)=x^{2} \arcsin (x) , for -1 \leq x \leq 1 $.
1. Sketch the graph of y=f(x) .
2. Write down the range of f .
3. Solve the inequality $ \left|x^{2} \arcsin (x)\right|>0.5$ .
参考答案:    

标记此题
31#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { Find all solutions to the equation } \frac{1}{\tan x}+\frac{1}{\tan 2 x}=0 \text { where } 0 \lt x\lt 2 \pi \text { and } x \neq \pi \text {. }$      

参考答案:     查看本题详细解析

标记此题
32#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { It is given that } \sec \theta=-\frac{6}{5} \text {, where } \pi<\theta<2 \pi \text {. Find the exact value of } \tan \theta \text {. }$   

参考答案:     查看本题详细解析

标记此题
33#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Consider the functions f(x)=3 cos5 fri 8ou+xeh9dz9hm5 (x)+$\frac{9}{2} $ and $g(x)=3 \cos \left(x+\frac{\pi}{3}\right)+A$ , where $x \in \mathbb{R}$ and $A<\frac{9}{2}$ .
1. Describe a sequence of two transformations that transforms the graph of f to the graph of g .

The y -intercept of the graph g is at the point $\left(0, \frac{9}{2}\right)$
2. Find the range of g .
参考答案:    

标记此题
34#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
$\text { Solve the equation } \cos 2 x+\cos x=1+\sin 2 x-\sin x \text {, for } x \in[-\pi, \pi] \text {. }$
参考答案:    

标记此题
35#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $g(x)=-4 x-\frac{\pi}{3}$ and h(x)=$5 \cos x-1$ , for $x \in \mathbb{R}$ .
1. Show that $(h \circ g)(x)=5 \cos \left(-4 x-\frac{\pi}{3}\right)-1$ .
2. Find the range of $h \circ g$ .
3. Given that $(h \circ g)\left(\frac{5 \pi}{12}\right)=4$ , find the next value of x , greater than $\frac{5 \pi}{12} $, for which $(h \circ g)(x)=4$.
4. The graph of $y=(h \circ g)(x) $ can be obtained by applying five transformations to the graph of $ y=\cos x$. State what the five transformations represent geometrically and give the order in which they are applied.
参考答案:    

标记此题
36#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { The diagram below shows the graph of } f(x)=a \sin (k(x-d))+c \text {, for } 2 \leq x \leq 14 \text {. }$



The graph of f has a maximum at $\mathrm{P}(5,15)$ and a minimum at $\mathrm{Q}(11,-5)$ .
1. Write down the value of:
1. a ;   
2. c .   
2. 1. Show that $ k=\frac{\pi}{6}$ .   
2. Find the smallest possible value of d , given d>0 .   
3. Find $f^{\prime}(x)$ .
4. At a point R , the gradient is $-\frac{5 \pi}{3}$ . Find the x -coordinate of R .   

参考答案:     查看本题详细解析

标记此题
37#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $f(x)=\sin x-\sqrt{3} \cos x, 0 \leq x \leq 2 \pi$ .
The following diagram shows the graph of f .

The curve crosses the x -axis at A and C and has a maximum at point B .
1. Find the exact coordinates of A and of C .
2. Find $f^{\prime}(x) $.
3. Find the coordinates of B .
参考答案:    

标记此题
38#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
$\text { Find all solutions to the equation } \tan 2 x-3 \tan x=0 \text { where } 0^{\circ} \leq x<360^{\circ} \text {. }$
参考答案:    

标记此题
39#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
In a triangle $\mathrm{ABC}, $\mathrm{AB}=2 \mathrm{~cm}$, $\mathrm{CBA}=\frac{\pi}{4}$ and $\mathrm{B} \hat{\mathrm{A}} \mathrm{C}=\theta $.
1. Show that $\mathrm{AC}=\frac{2}{\cos \theta+\sin \theta}$ .
2. Given that A C has a minimum value, find the value of $\theta$ for which this occurs.
参考答案:    

标记此题
40#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The London Eye is an observ+8q oiez1g7q)e6g 5o , dupkddation wheel in England with diameter of 120 metres. The wheel rotates at a constant speed and completes 2.5 rotations every hour. Th d) 5ik6zqe8,g dqpo+dg u1eo7e bottom of the wheel is 15 metres above the ground.


A seat starts at the bottom of the wheel.
1. Find the maximum height above the ground of the seat.

After t minutes, the height h metres above the ground of the seat is given by

h(t)=75+a cos (b t), b>0 .

2. 1. Show that the period of h is 24 minutes.
2. Write down the exact value of b .
3. Find the value of a .
4. Sketch the graph of h , for $0 \leq t \leq 48$ .
5. In one rotation of the wheel, find the probability that a randomly selected seat is at least 110 metres above the ground.
参考答案:    

标记此题
41#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { It is given that } \operatorname{cosec} \theta=-\frac{5}{3} \text {, where } \frac{\pi}{2}<\theta<\frac{3 \pi}{2} \text {. Find the exact value of } \cot \theta \text {. }$   

参考答案:     查看本题详细解析

标记此题
42#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  1. Show that $2 x-9+\frac{5}{x+1}=\frac{2 x^{2}-7 x-4}{x+1}, x \in \mathbb{R}, x \neq-1$ .  (代数式) 
2. Hence, solve the equation $2 \sin 2 \theta-9+\frac{5}{\sin 2 \theta+1}=0$ for $0 \leq \theta \leq \pi, \theta \neq \frac{3 \pi}{4}$ .      

参考答案:     查看本题详细解析

标记此题
43#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
1. Show that $\log _{16}(\cos 2 x+7)=\log _{4} \sqrt{\cos 2 x+7}$ .
2. Hence, or otherwise, solve $\log _{4}(\sqrt{10} \cos x)=\log _{16}(\cos 2 x+7) $, for $0\lt x \lt\frac{\pi}{2}$ .
参考答案:    

标记此题
44#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following table shows the probability distribution of ahgi f ubt/03i2n,.tin discrete random variaifi3 t0t b.in2n,hug/ ble Z, in terms of an angle θ.



1. Show that $\cos \theta=\frac{3}{4}$ .   
2. Find $\tan \theta $, given that $\tan \theta>0$ .

Let $f(x)=\frac{1}{\cos x}$ , for $0 \lt x \lt\frac{\pi}{2}$ .
The graph of y=f(x) between $x=\theta$ and $x=\frac{\pi}{4}$ is rotated $360^{\circ}$ about the x -axis.   
3. Find the volume of the solid formed.   

参考答案:     查看本题详细解析

标记此题
45#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Given that $\sin x-\cos x=\frac{1}{4}$, find $ \cos 8 x$ , rounding your answer to 3 significant figures.   

参考答案:     查看本题详细解析

标记此题
46#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
A function, f , is defined bymb1y1pzgt* k - $f(x)=6.2 \sin \left(\frac{\pi}{9}(x-7.5)\right)+c $, for $0 \leq x \leq 15$ , where $c \in \mathbb{R}$ .
1. Find the period of f .

The function f has a minimum at $\mathrm{A}(3,11.8)$ and a maximum at $\mathrm{B}(12,24.2)$ .
2. 1. Find the value of c .
2. Hence find the value of f(9) .

A second function, g , is defined by $g(x)=a \sin \left(\frac{2 \pi}{15}(x+2.25)\right)+b $, for $0 \leq x \leq 15$ , where a, b$ \in \mathbb{R}$ .
The function g passes through the points $ \mathrm{P}(1.5,14.5)$ and $ \mathrm{Q}(14,10.2)$ .
3. Find the value of a and the value of b .
4. Find the value of x for which the functions have the greatest difference.
参考答案:    

标记此题
47#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
1. Show that $\log _{2} \sqrt{3-\cos 2 x}=\log _{4}(3-\cos 2 x)$ .
2. Hence, or otherwise, solve $\log _{4}(3 \sin x)+\frac{1}{4}=\log _{2} \sqrt{3-\cos 2 x}$ , for $0
参考答案:    

标记此题
48#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram shows a ball att xdk ztjuppu:g76 3;a:g ;ft+gached to the end of a spring, which is suspended from a ceg:u;utp6g+3f z:d ; jktgap7xiling.



The height, h metres of the ball above the ground at time t seconds after being released can be modelled by the function h(t)=0.5 $\cos (\pi t)+2.2$, where $t \geq 0 $.
1. Find the height of the ball above the ground when it is released.   
2. Find the minimum height of the ball above the ground.   
3. Show that the ball takes 2 seconds to return to its initial height above the ground for the first time.   
4. For the first 2 seconds of its motion, determine the amount of the time that the ball is less than $2.2+0.25 \sqrt{2}$ meters above the ground.   
5. Find the rate of change of the ball's height above the ground when $t=\frac{1}{3}$ . Give your answer in the form p $\pi \sqrt{q} \mathrm{~ms}^{-1} $, where $p \in \mathbb{Q}$ and $q \in \mathbb{Z}^{+}$    $\mathrm{ms}^{-1}$

参考答案:     查看本题详细解析

标记此题
49#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The first three terms of a geometric sequence are*lr ,d /sox79(b zs8 2 sb,9ildilwsrw

$\sqrt{2} \cos x, \sin 2 x$, $2 \sqrt{2} \sin ^{2} x \cos x$,$-\frac{\pi}{2} \lt x\lt\frac{\pi}{2}$ .

1. Find the common ratio.
2. Find the set of values of x for which the geometric series below converges.

$\sqrt{2} \cos x+\sin 2 x+2 \sqrt{2} \sin ^{2} x \cos x+\cdots$

Consider $x=\arcsin \left(\frac{1}{2 \sqrt{2}}\right), 0 \lt x \lt \frac{\pi}{2}$ .
3. Show that the sum to infinity of this series is $\sqrt{7}$ .
参考答案:    

标记此题
50#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
A physicist is studying the motion of two separate particles ulw;kwu, xj/)zq c8c6 moving in a straight line. She measures the displacement of each particle from a fixed origin over the course of 10 seconds. The physicist found that the displacement of particle A, s_{A} \mathrm{~cm} , at time t seconds canwwc/jxzu8; k) ,q 6clu be modelled by the function $ s_{A}(t)=7 t+9$ , where $ 0 \leq t \leq 10$ .
The physicist found that the displacement of particle B,$ s_{B} \mathrm{~cm}$ , at time t seconds can be modelled by the function $s_{B}(t)=\cos (3 t+5)+8 t+4$ .
1. Use the physicist's models to find the initial displacement of
1. Particle A ;
2. Particle B correct to three significant figures.
2. Find the values of t when s_{A}(t)=s_{B}(t) .
3. For t>6 , prove that particle B was always further away from the fixed origin than particle A .
4. For $0 \leq t \leq 10 $, find the total amount of time that the velocity of particle A was greater than the velocity of particle B .
参考答案:    

标记此题
51#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Consider the function:: pz rs6;izck $f(x)=\sin \left(\frac{\pi}{12}-\frac{x}{4}\right)$ for $ x \in \mathbb{R}$ .
1. Show that the y -intercept of f(x) is $\frac{\sqrt{6}-\sqrt{2}}{4} $
2. Find the least positive value of x for which $ f(x)=\frac{\sqrt{3}}{2}$ .
参考答案:    

标记此题
52#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
A curve is given by thevi pvwe w7)*+a equation $y=\cos (2 \pi \sin x)$ .
Find the coordinates of all the points on the curve for which $\frac{\mathrm{d} y}{\mathrm{~d} x}=0,0 \leq x \leq \pi$ .
参考答案:    

标记此题
53#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
A curve is given by ts ,r:;+gjw mxc c0d h*6g;nusthe equation $ y=\cos (2 \pi \cos x)$.
Find the coordinates of all the points on the curve for which $\frac{\mathrm{d} y}{\mathrm{~d} x}=0,0 \leq x \leq \pi $.
参考答案:    

标记此题
54#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The first two terms of an inazcdbpk*/ 1 5xg id;lrl*qf 2-finite geometric sequence are $ u_{1}=20$ and $u_{2}=16 \sin ^{2} \theta$, where $0 \lt \theta \lt 2 \pi$ , and $\theta \neq \pi$ .
1. 1. Find an expression for r in terms of $\theta$ .
2. Find the possible values of r .
2. Show that the sum of the infinite sequence is $\frac{100}{3+2 \cos 2 \theta}$
3. Find the values of $\theta$ which give the greatest value of the sum.
参考答案:    

标记此题
55#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Consider the function definen/7*c hihioxvb fzcjx yc..c//.0u j2d by $f(x)=\frac{7}{x^{2}+6 x-7}$ for $x \in \mathbb{R}$,$ x \neq-7$,$x \neq 1$ .
1. Sketch the graph of y=f(x) , showing the values of any axes intercepts, the coordinates of any local maxima and minima, and the graphs of any asymptotes.

Next, consider the function g defined by $g(x)=\frac{7}{x^{2}+6 x-7}$ for $x \in \mathbb{R}$, x>1 .
2. Show that $ g^{-1}(x)=-3+\sqrt{\frac{16 x+7}{x}}$ .
3. State the domain of $g^{-1}$ .

Now, consider the function h defined by $h(x)=\arccos \left(\frac{x}{7}\right)$ .
4. Given that $(h \circ g)(a)=\frac{\pi}{3}$ , find the value of a . Give your answer in the form $ p+q \sqrt{2}$ where p, q$\in \mathbb{Z}$ .
参考答案:    

标记此题
56#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $z=\cos \theta+\mathrm{i} \sin \theta $, for $-\frac{\pi}{4}<\theta<\frac{\pi}{4} $.
1. 1. Find $z^{3}$ using the binomial theorem.
2. Use de Moivre's theorem to show that $\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta $ and $\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta$ .
2. Hence show that $\frac{\sin 3 \theta-\sin \theta}{\cos 3 \theta+\cos \theta}=\tan \theta $.
3. Given that $\sin \theta=\frac{1}{3}$ , find the exact value of $\tan 3 \theta $.
参考答案:    

标记此题
57#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
1. Solve $2 \sin \left(x+120^{\circ}\right)=\sqrt{3} \cos \left(x+60^{\circ}\right) $, for x $\in\left[0,180^{\circ}\right]$ .
2. Show that $\sin 75^{\circ}+\cos 75^{\circ}=\frac{\sqrt{6}}{2}$ .
3. Let $z=\sin 4 \theta+\mathrm{i}(1-\cos 4 \theta)$ , for $z \in \mathbb{C}, \theta \in\left[0,90^{\circ}\right] $.
1. Find the modulus and argument of z in terms of $\theta$ .
2. Hence find the fourth roots of z in modulus-argument form.
参考答案:    

标记此题
58#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
A water truck tank which is 3 metres long has a uniform cross-section imhafi;7h7.n /zrbzj 9ga b8c;n the shape of a major segment. The tank is divided into two equal parts and is partially filled with water as shown in the following diagram of the cross-section. The centre of the circle is O, the angle AOB is α radians, and the angle AOF is z izcb hjn7 gr8b h;a/a7fm.9;β radians.



1. Given that $\alpha=\frac{\pi}{4}$ , calculate the amount of water, in litres, in the right part
of the water tank. Give your answer correct to the nearest integer.
2. Find an expression for the volume of water V , in $\mathrm{m}^{3}$, in the left part of the water tank in terms of $\beta$ .

The left part of the tank is now being filled with water at a constant rate of 0.001 $\mathrm{~m}^{3}$ per second.
3. Calculate $\frac{\mathrm{d} \beta}{\mathrm{d} t}$ when \$beta=\frac{3 \pi}{5}$ . Round your answer to 3 significant figures.
4. Calculate the amount of time it will take for the left part of the tank to be fully filled with water. Give your answer in minutes and correct to the nearest integer.
参考答案:    

标记此题
59#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
In a triangle ABC , ptd*yxk a,,xk0zm (l 8fd7 9jn

$\begin{array}{l}
5 \sin (\mathrm{ABC})-6 \cos (\mathrm{B} \hat{\mathrm{C}} \mathrm{A})=7, \\
6 \sin (\mathrm{B} \hat{\mathrm{C}} \mathrm{A})-5 \cos (\mathrm{A} \hat{\mathrm{B}})=\sqrt{2} .
\end{array}$

1. Show that $\sin (\mathrm{ABC}+\mathrm{BCA})=\frac{1}{6}$.

James claims that CÂB can have two possible values.
2. Show that James is wrong by proving that CÂB has only one possible value.
参考答案:    

标记此题
60#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Consider the equation cjihs 7 3lc.p.h8,hvf

$\frac{\sqrt{\sqrt{2}-1}}{\sin x}+\frac{\sqrt{\sqrt{2}+1}}{\cos x}=2 \sqrt[4]{8}, \quad 0 \lt x \lt\frac{\pi}{2}$ .

1. Given that $\sin \left(\frac{\pi}{8}\right)=\frac{1}{2} \sqrt{2-\sqrt{2}} $ and $\cos \left(\frac{\pi}{8}\right)=\frac{1}{2} \sqrt{2+\sqrt{2}}$ , verify that $x=\frac{\pi}{8}$ is a solution to the equation.
2. Hence find the other solution to the equation.
参考答案:    

标记此题
61#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $ f(x)=x^{4}-0.4 x^{3}-2.85 x^{2}+0.9 x+1.35$ , for $x \in \mathbb{R}$ .
1. Find the solutions for f(x)>0 .
2. For the graph of y=f(x) ,
1. find the coordinates of local minimum and maximum points.
2. find the x -coordinates of the points of inflexion.

The domain of f is now restricted to [a, b] where a, b $\in \mathbb{R}^{+}$ .
3. 1. Write down the smallest value of a>0 and the largest value of b>0 for which f has an inverse. Give your answers correct to three significant figures.
2. For these values of a and b , sketch the graphs of y=f(x) and $y=f^{-1}(x)$ on the same set of axes, showing clearly the coordinates of the end points of each curve.
3. Solve f^{-1}(x)=0.5 .

Let $g(x)=\frac{2}{3} \sin (2 x-1)+\frac{1}{2}$, $\frac{1}{2}-\frac{\pi}{4} \leq x \leq \frac{1}{2}+\frac{\pi}{4}$ .
4. 1. Find an expression for g^{-1} and state its domain.
2. Solve $\left(f^{-1} \circ g\right)(x)<0.5$ .
参考答案:    

标记此题
62#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
1. Solve the equation l(b;fgbh ani/87c +-ab tl;y u$\sin \left(x+90^{\circ}\right)=2 \cos \left(x-60^{\circ}\right)$, $0^{\circ} \lt x\lt360^{\circ} $.
2. Show that $\sin 15^{\circ}+\cos 15^{\circ}=\frac{\sqrt{6}}{2}$ .
3. Let $z=1-\cos 4 \theta-\mathrm{i} \sin 4 \theta$ , for $ z \in \mathbb{C}, 0<\theta<\frac{\pi}{2}$ .
1. Find the modulus and argument of z . Express each answer in its simplest form.
2. Hence find the fourth roots of z in modulus-argument form.
参考答案:    

标记此题
63#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Consider the function1ac 2qw1fz j9.ysn o5)z0 espl $f(x)=-2 \sin ^{2} x+3 \sin 2 x+\tan x-3,0 \leq x<\frac{\pi}{2}$ .
1. 1. Determine an expression for $f^{\prime}(x)$ in terms of x .
2. Sketch the graph of $y=f^{\prime}(x)$ for $ 0 \leq x<\frac{\pi}{2}$ .
3. Find the x -coordinate(s) of the point(s) of inflexion of the graph of y=f(x) , labelling these clearly on the graph of $y=f^{\prime}(x)$ .
2. Let $u=\tan x$ .
1. Express sin x in terms of u .
2. Express sin 2 x in terms of u .
3. Show that f(x)=0 can be expressed as $u^{3}-5 u^{2}+7 u-3=0 $.
3. Solve the equation f(x)=0 , giving your answers in the form $\arctan p$ , where $ p \in \mathbb{Z}$ .
参考答案:    

标记此题
64#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
A function f(x) is defined kc115h6/o wit5r tw r ppdu(8wby $f(x)=\arccos \left(\frac{x^{2}-1}{x^{2}+1}\right)$, $x \in \mathbb{R}$
1. Show that f is an even function.
2. Find the equation of the horizontal asymptote to the graph of y=f(x) .
3. 1. Show that $f^{\prime}(x)=-\frac{2 x}{\sqrt{x^{2}}\left(x^{2}+1\right)}$ for $x \in \mathbb{R}$,$ x \neq 0 $.
2. Using the expression for $f^{\prime}(x)$ and the result $ \sqrt{x^{2}}=|x|$ , show that f is increasing for x<0 .

A function g is defined by $g(x)=\arccos \left(\frac{x^{2}-1}{x^{2}+1}\right)$, $x \in \mathbb{R}$, $x \geq 0$ .
4. Find the range of g .
5. Find an expression for $g^{-1}(x)$ .
6. State the domain of $g^{-1}(x)$ .
7. Sketch the graph of $y=g^{-1}(x)$ . Clearly indicating any asymptotes with their equations and stating the values of any axes intercepts.
参考答案:    

标记此题
65#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The following diagram sdkklvz/s hq4q6gmux :+22/ mchows the graph of $y=\arctan (2 x-3)+\frac{3 \pi}{4}$ for $ x \in \mathbb{R}$ , with asymptotes at $ y=\frac{\pi}{4} $ and $y=\frac{5 \pi}{4}$ .



1. Describe a sequence of transformations that transforms the graph of $ y=\arctan x$ to the graph of $y=\arctan (2 x-3)+\frac{3 \pi}{4}$ for $ x \in \mathbb{R}$ .
2. Show that $\arctan p-\arctan q \equiv \arctan \left(\frac{p-q}{1+p q}\right)$ .
3. Verify that $\arctan (x+2)-\arctan (x+1)=\arctan \left(\frac{1}{(x+1)^{2}+(x+1)+1}\right) $.
4. Using mathematical induction and the results from part (b) and (c), prove that

$\sum_{r=1}^{n} \arctan \left(\frac{1}{r^{2}+r+1}\right)=\arctan (n+1)-\frac{\pi}{4} \quad \text { for } n \in \mathbb{Z}^{+}$
参考答案:    

  • :
  • 总分:65分 及格:39分 时间:不限时
    未答题: 已答题:0 答错题:
    当前第 题,此次习题练习共有 65 道题
    本系统支持习题练习,作业与考试三大模式,作业考试自动评分,成绩排序一键导出,可设定动态变量同一试卷千人千题
    如果您对本系统感兴趣,想加入我们或者想进行任何形式的合作,请加微信 skysky1258

    浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

    GMT+8, 2024-11-23 20:42 , Processed in 0.229355 second(s), 151 queries , Redis On.