题库网 (tiku.one)

 找回密码
 立即注册

 

      

上传图片附件

未使用图片

小贴士: 允许的图片文件格式为: gif, jpg, jpeg, png, webp,上传完成后会在上方生成预览,用鼠标连续双击缩略图,或拖动缩略图,该图片就被绑定至本题,显示在题目下方

本次作答已使用

小贴士: 此栏目显示的是当前作答使用的所有图片,绑定到某一题目的图片同时会显示在该题目下方; 删除使用的图片会将其转移到<未使用图片>类别


习题练习:Differential Calculus



 作者: admin发布日期: 2024-07-31 00:03   总分: 127分  得分: _____________

答题人: 匿名未登录  开始时间: 24年07月31日 00:03  切换到: 整卷模式

标记此题
1#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Note: In this question, distance is in metres and time is i7e*pu:lgrc6dez s4*q n seconds.
A tennis ball is thrown in the air. Its height h above the ground after time t is given by

h(t)=-5 $t^{2}+20 t+4$,$ \text { for } 0 \leq t \leq 4 $.

1. Find $h^{\prime}(t)$ .  (代数式) 
2. Find the maximum height attained by the ball.   

参考答案:     查看本题详细解析

标记此题
2#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let f(x)=$e^{3 x}$ . The line L is the tangent to the curve of f at (0,1) . Find the equation of L in the form y=m x+c .  (代数式) 

参考答案:     查看本题详细解析

标记此题
3#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { Let } f(x)=2 x^{2}-5 x+7 \text {. The line } L \text { intersects } f \text { at } \mathrm{P}(3,10) \text { and is perpendicular to the tangent to the curve of } f \text { at } \mathrm{P} \text {. Find the equation of } L \text { in the form } y=m x+c \text {. }$  (代数式) 

参考答案:     查看本题详细解析

标记此题
4#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { Find the equation of the tangent to the curve } y=e^{2 x-4}-x \text { at the point where } x=2 \text {. }$ (代数式) 

参考答案:     查看本题详细解析

标记此题
5#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let $f(x)=e^{-3 x}$ .
1. Write down $f^{\prime}(x), f^{\prime \prime}(x) $ and $f^{\prime \prime \prime}(x)$ .$f^{\prime}(x) $  (代数式) 
$f^{\prime \prime}(x) $  (代数式) 
$f^{\prime \prime \prime}(x) $  (代数式) 
2. Find an expression for $ f^{(n)}(x)$ .$f^{(n)}(x)$  (代数式) 

参考答案:     查看本题详细解析

标记此题
6#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let f(x)=0.5 $x^{3}-3.2 x $. There is a local maximum at point A and a local minimum at point B .
1. 1. Find the coordinates of point A .
2. Find the coordinates of point B .
2. Find the coordinates of the point of inflection of f .
3. Write down the values of x for which the graph of f has a negative rate of change.
参考答案:    

标记此题
7#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $f^{\prime}(x)=x^{3}-9$ $x^{2}+24 x+3 $.
1. There are two points of inflection on the graph of f . Write down the x -coordinates of these points.
2. Let $h(x)=f^{\prime \prime}(x)$ . Explain why the graph of h has no points of inflection.
参考答案:    

标记此题
8#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Consider $f(x)=x^{3}-\frac{p}{x}$, $x \neq 0$ , where p is a constant.
1. Find $f^{\prime}(x)$ .  (代数式) 
2. There is a minimum value of f(x) when x=1 . Find the value of p .   

参考答案:     查看本题详细解析

标记此题
9#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A particle moves in a9itjpj6 r , k-aj+sg4nl(4mvf straight line with velocity $v(t)=2 t-0.3 t^{3}+2$ , for $t \geq 0$ , where v is in $\mathrm{ms}^{-1}$ and t in seconds.
1. Find the acceleration of the particle after 2.2 seconds.   
2. a. Find the time when the acceleration is zero.   
b. Find the velocity when the acceleration is zero.   

参考答案:     查看本题详细解析

标记此题
10#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The diagram shows part of t5zw69+ vrri36wlchv a he graph of y=f ′(x). The x-intercepts are at points A and Cwva vci w+9z r5hl6r63. There is a minimum at point B and a maximum at point D.


1. 1. Write down the value of $f^{\prime}(x)$ at A .
2. Hence, show that A corresponds to a maximum on the graph of f .
2. Which of the points A, B, C, D corresponds to a minimum on the graph of f .
3. Which of the points A, B, C, D corresponds to a point of inflection of f . Justify your answer.
参考答案:    

标记此题
11#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The following diagram npdq 6.eza6xu 6q 3)va5lxix su(/sm f)bxh;2 show part of the graph of y=f(x).



The graph has a local maximum at A , where x=-2 , and a local minimum at B , where x=8 .
1. On the graph above, sketch the graph of $y=f^{\prime}(x)$ .
2. Write down in order from least to greatest: $f(-2), f^{\prime}(8)$, $f^{\prime \prime}(-2) $.
参考答案:    

标记此题
12#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { Consider the function } f(x)=\frac{2 x}{\cos x} \text {. Find } f^{\prime}(\pi) \text {. }$   

参考答案:     查看本题详细解析

标记此题
13#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram shows the g.w s:d/1 wwvyhq.c8r qraph of f ′, the derivative of f.



The points $\mathrm{M}(-\sqrt{2},-60)$ and $\mathrm{N}(\sqrt{2},-60)$ lie on the graph of $f^{\prime}$ . The point $\mathrm{P}(\sqrt{2}, 40)$ lies on the graph of the function f .
1. Write down the gradient of the curve of f at P .   
2. Find the equation of the tangent to the curve of f at P .  (代数式) 

参考答案:     查看本题详细解析

标记此题
14#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $f(x)=k x^{3}$ .
1. Show that the point $\mathrm{P}(2,8 k)$ lies on the curve of f .

At P , the normal to the curve is parallel to $y=\frac{1}{6} x $.
2. Find the value of k .
参考答案:    

标记此题
15#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let $f(x)=4 x \sin (2 x)$ .
1. Find $f^{\prime}(x)$ .  (代数式) 
2. Find the gradient of the curve when $ x=\frac{\pi}{2}$ .   

参考答案:     查看本题详细解析

标记此题
16#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let $f(x)=6 x-\ln x $, for x>0 .
1. Find $f^{\prime}(x)$ .  (代数式) 
2. Find $f^{\prime \prime}(x)$ .  (代数式) 
3. Solve $f^{\prime}(x)=f^{\prime \prime}(x)$ .   

参考答案:     查看本题详细解析

标记此题
17#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Consider the curve $ y=\frac{2 x}{1+x}$,$ x \in \mathbb{R}$,$ x \neq-1$.
1. Find $\frac{\mathrm{d} y}{\mathrm{~d} x} $.  (代数式) 
2. Determine the equation of the normal to the curve at the point $ \mathrm{P}(-2,4) $.  (代数式) 

参考答案:     查看本题详细解析

标记此题
18#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let f(x)=p x^{3}-q x . At x=0 , the gradient of the curve of f is 2 . Given that $ f^{-1}(12)=2 $, find the value of p and q . p =    q =   

参考答案:     查看本题详细解析

标记此题
19#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A function f(x) has k(,x (nwjs7wi derivative $f^{\prime}(x)=6 x^{2}-24 x$ . The graph of f has an x -intercept at x=1 .
1. Find f(x) .  (代数式) 
2. The graph of f has a point of inflexion at x=k . Find k .   
3. Find the values of x for which the graph of f is concave-up. x>  

参考答案:     查看本题详细解析

标记此题
20#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let $ f(x)=x^{2} e^{x}$ and $g(x)=4 x-x^{2}$ .
1. Find $f^{\prime}(x)$ .  (代数式) 
2. Find the x -coordinate where the tangents of f(x) and g(x) are parallel.   

参考答案:     查看本题详细解析

标记此题
21#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A farmer wants to build a rectangularp/qhp ,9-q3frnae)k j enclosure for his chickens. The area of the enclosjehpq9af- r 3knq),/pure must be 350 $\mathrm{~m}^{2}$ . The fencing used for the side A B costs \$ 13 per metre. The fencing for the other three sides costs $ 4 per metre. The farmer wants the cost of the enclosure to be a minimum. Find the minimum cost.   


参考答案:     查看本题详细解析

标记此题
22#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The function f is defbf/cryw+*chi lq5/na c 4 85tuined for all $x \in \mathbb{R}$ . The tangent to the graph of f at x=3 has equation y=4 x-2 .
1. Write down the value of $ f^{\prime}(3)$ .   
2. Find f(3) .

The function g is defined for all $ x \in \mathbb{R}$ where $g(x)=11-2 x^{2}$ and $ h(x)=f(g(x)) $.   
3. Find h(2) .   
4. Hence, find the equation of the tangent to the graph of h at x=2 .  (代数式) 

参考答案:     查看本题详细解析

标记此题
23#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
$\text { A function } f \text { is defined by } f(x)=-x^{5}+e^{-x}+2, x \in \mathbb{R} \text {. By considering } f^{\prime}(x) \text {, determine whether } f \text { is a one-to-one or many-to-one function. }$
参考答案:    

标记此题
24#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let f(x)=g(x) h(x) s:h v7 kjyymgz v;you-51a (zam,*uo5, where g(3)=6, h(3)=2, $g^{\prime}(3)=4 $ and $h^{\prime}(3)=1$ . Find the equation of the normal to the graph of f at x=3 .  (代数式) 

参考答案:     查看本题详细解析

标记此题
25#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Consider the curve /ck men8v;ehr;l*kn1 $y=\frac{9}{5-x}+\frac{1}{x-1}$ .
Find the x -coordinates of the points on the curve where the gradient is zero.      

参考答案:     查看本题详细解析

标记此题
26#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Consider the function f(x)=ln (2 x-1) . Leigdt tn;k v9 -t7)cgv 72o.wlndt cy*:t point A be the point on the curve where x=3 :) 2-ctv7tgidvy* ;w9lk c gntd.7ont.
1. Write down the gradient of the curve at A .   
2. The normal to the curve at A cuts the x -axis at P . find the coordinates of P . (a,b) a=   b=  

参考答案:     查看本题详细解析

标记此题
27#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $f(x)=\frac{5 x}{e^{3 x}}$ , for $0 \leq x \leq 10 $.
1. Sketch the graph of f .
参考答案:    

标记此题
28#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
$\text { A particle } P \text { starts from a point } O \text { and moves along a horizontal straight line. Its velocity } v \mathrm{~ms}^{-1} \text { after } t \text { seconds is given by }$

The following diagram shows the graph of v.


1. Find the initial velocity of particle P .
2. Find the acceleration of the particle in the first second.
3. How many times does the particle change direction in the first 8 seconds. Explain your answer.
4. Find the total distance travelled by the particle in the first 8 seconds.
参考答案:    

标记此题
29#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let $f(x)=\frac{g(x)}{h(x)}+15$ , where g(5)=30, h(5)=10, $g^{\prime}(5)=20 $ and $h^{\prime}(5)=5$.
Find the equation of the normal to the graph of f at x=5 .  (代数式) 

参考答案:     查看本题详细解析

标记此题
30#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Consider the function f definede*q9 8+-wwk kndyvk4 p by $ f(x)=\ln \left(4 x^{2}-9\right) $ for $x>\frac{3}{2}$ . The following diagram shows part of the graph of f which crosses the x -axis at point A , with coordinates (a, 0) . The line L is the tangent to the graph of f at the point B .



1. Find the exact value of a .   
2. Given that the gradient of L is $\frac{1}{2}$ , find the x -coordinate of B .   

参考答案:     查看本题详细解析

标记此题
31#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The following diagram shows /o9,*oezlju o 1kys6b the graph of f ′ , the derivative of f.


The graph of $f^{\prime}$ has a local maximum at A , a local minimum at B and passes through $\mathrm{P}(2,-3)$ .
1. The point $ \mathrm{Q}(2,6)$ lies on the graph of the function f .
1. Write down the gradient of the curve of f at Q .
2. Find the equation of the normal to the curve of f at Q .
2. Determine the concavity of the graph of f when 2
参考答案:    

标记此题
32#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
A particle moves in a straight line and its velocitwk*vqh6d s *6oy, v $\mathrm{~ms}^{-1} $, at time t seconds, is given by $v(t)=\left(t^{2}-2\right)^{2}$ , for $0 \leq t \leq 2 $.
1. Find the initial velocity of the particle.
2. Find the value of t for which the particle is at rest.
3. Find the total distance travelled by the particle in the first 2 seconds.
4. Show that the acceleration of the particle is given by a(t)=4 $t^{3}-8 t$ .
5. Find the values of t for which the velocity is positive and the acceleration is negative.
参考答案:    

标记此题
33#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
$\text { Let } f(x)=x^{3}+3 x^{2}-9 x+k \text {. Part of the graph of } f \text { is shown below. The graph of } f \text { has a local maximum at } \mathrm{A} \text {, a local minimum at } \mathrm{B} \text { and a point of inflection at } \mathrm{C} \text {. }$



1. 1. Find $f^{\prime}(x)$ .
2. Find $f^{\prime \prime}(x)$ .
2. Find the x -coordinate of the point of inflection at C .

Given that f(-1)=14 .
3. 1. Find f(0) .
2. Hence, find the coordinates of the local maximum $\mathrm{A}(x, y)$ and justify your answer.
4. Write down in order from least to greatest $f^{\prime \prime}(\mathrm{B})$, $f^{\prime}(\mathrm{B}), f(\mathrm{~B})$ .v
参考答案:    

标记此题
34#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The values of the functions f and g and their deri 1d/l( ah;gbzkyn4mc1vatives for x=3 and x=7 are shown in the followingm 4nkhca(d1g lb; 1y/z table.



Let h(x)=f(x) g(x) .
1. Find h(3) .   
2. Find the equation of the normal to h when x=7 .  (代数式) 

参考答案:     查看本题详细解析

标记此题
35#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $ f(x)=\frac{\ln x}{x}$ , for x>0 .
1. Find $f^{\prime}(x)$ .
2. The graph of f has a maximum at point P . Find the coordinates of P .
参考答案:    

标记此题
36#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { Let } f(x)=x^{2}-3 x+2 \text {, for } x \in \mathbb{R} \text {. The following diagram shows part of the graph of } f \text {. }$



The graph of f crosses the x -axis at the point $\mathrm{P}(1,0)$ and at the point $\mathrm{Q}(2,0)$ .
1. Show that $f^{\prime}(1)=-1$ .

The line L is the normal to the graph of f at P .   
2. Find the equation of L in the form y=m x+c .  (代数式) 

The line L intersects the graph of f at another point R , as shown in the following diagram.



3. Find the x -coordinate of R .   
4. Find the area of the region enclosed by the graph of f and the line L . y =   

参考答案:     查看本题详细解析

标记此题
37#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Jack makes an open container uuxo -i1p29jj in the shape of a cuboid with square base, as shown in tx2 ij- uo1p9juhe following diagram.


The container has base length $x \mathrm{~m}$ and height $y \mathrm{~m}$ . The volume is $32 \mathrm{~m}^{3}$ .
Let A(x) be the outside surface area of the container.
1. Show that $A(x)=\frac{128}{x}+x^{2}$.  (代数式) 
2. Find $A^{\prime}(x)$ .  (代数式) 
3. Given that the outside surface area is a minimum, find the base length of the container.   
4. Jack coats the outside of the container with waterproof resin. A can of resin covers a surface area of $5 \mathrm{~m}^{2}$ and costs $ 15 . Find the total cost of the cans needed to coat the container.   

参考答案:     查看本题详细解析

标记此题
38#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let $ f(x)=24-2 x^{2}$ , for x $\in \mathbb{R}$ . The following diagram shows part of the graph of f and the rectangle OPQR , where R is on the positive x -axis, P is on the y -axis and Q is on the graph of f .




Find the coordinates of point R(x,y) that gives the maximum area of OPQR.x =    y =   

参考答案:     查看本题详细解析

标记此题
39#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Consider the function.ab ;i)i eay 6vzovl)/ $ f(x)=\frac{4 x^{2}+p x}{x+1}$ , where $x \neq-1$ and $p \in \mathbb{R}$ .
Find the value of p for which the graph of f has exactly one point with a gradient of zero.   

参考答案:     查看本题详细解析

标记此题
40#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let $ f(x)=\left(x^{2}+a\right)^{5} $.
In the expansion of the derivative, $f^{\prime}(x)$ , the coefficient of the term in $ x^{5} $ is 960 . Find the possible values of a .±   

参考答案:     查看本题详细解析

标记此题
41#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { A closed cylindrical can with radius } r \mathrm{~cm} \text { and height } h \mathrm{~cm} \text { has a volume of } 24 \pi \mathrm{cm}^{3} \text {. }$


1. Express h in terms of r .  (代数式) 

The material for the base and top of the can costs 15 cents per $\mathrm{cm}^{2}$ and the material for the curved side costs 10 cents per $\mathrm{cm}^{2}$ . The total cost of the material, in cents, is C .
2. Show that C=30 $\pi r^{2}+\frac{480 \pi}{r}$ .  (代数式) 
3. Given that there is a minimum value for C , find this minimum value in terms of $\pi$ .   

参考答案:     查看本题详细解析

标记此题
42#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let f(x)=$\sin (3 x)$ and g(x)=$\ln (2 x+1)$ .
1. a. Find $ f^{\prime}(x)$ ;  (代数式) 
b. Find $g^{\prime}(x)$ .  (代数式) 
2. Let $h(x)=f(x) \times g(x)$ . Find $h^{\prime}\left(\frac{\pi}{2}\right)$ .   

参考答案:     查看本题详细解析

标记此题
43#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The values of the functions f and g and their derivatives for x=2,4hi2v 3qn l59u+au (gijt93ayz( pppy x=3 and x=6 are shown in the followin39giyqjna2py34 9l(5u(p+vu az i phtg table.


1. Evaluate $\int_{2}^{3} g^{\prime \prime}(x) \mathrm{d} x $.   
2. Let $k(x)=\frac{f(x)}{g(x)}$ . Find $k^{\prime}(2)$ .   
3. Let $h(x)=f(g(x))$ . Find the equation of the tangent to h at x=6 .  (代数式) 

参考答案:     查看本题详细解析

标记此题
44#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The displacement, s , in metres, of a particle t seconds afo:z5u() hmy hater it passes through the origin is given by the e yom(az:uh 5h)xpression $s=\ln \left(3+t-2 e^{-t}\right)$,$ t \geq 0$ .
1. Find an expression for the velocity, v , of the particle at time t .  (代数式) 
2. Find an expression for the acceleration, a , of the particle at time t .  (代数式) 
3. Find the acceleration of the particle at time t=0 .   

参考答案:     查看本题详细解析

标记此题
45#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
A particle P moves along a sjel.*m7vnp , otraight line so that its velocity, $v \mathrm{~ms}^{-1}$ , after t seconds, is given by $v=\sin 3 t-2 \cos t-2$ , for $0 \leq t \leq 6$ . The initial displacement of P from a fixed point O is 5 metres.
1. Find the displacement of P from O after 6 seconds.

The following sketch shows the graph of v .

2. Find when the particle is first at rest.
3. Write down the number of times the particle changes direction.
4. Find the acceleration of P after 2 seconds.
5. Find the maximum speed of P .
参考答案:    

标记此题
46#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Consider the curve $ y=(k x-1) \ln (2 x)$ where $ k \in \mathbb{R}$ and x>0 .
The tangent to the curve at x=2 is perpendicular to the line $y=\frac{2}{5+4 \ln 4} x$ .
Find the value of k .   

参考答案:     查看本题详细解析

标记此题
47#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { Consider } f(x), g(x) \text { and } h(x)=(f \circ g)(x) \text {, for } x \in \mathbb{R} \text {. Given that } g(5)=8, g^{\prime}(5)=2 \text { and } f^{\prime}(8)=-4 \text {, find the gradient of the normal to the curve } y=h(x) \text { at } x=5 \text {. }$   

参考答案:     查看本题详细解析

标记此题
48#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  

The graph of f has a minimum at $\mathrm{P}(4,8)$ and a maximum at $\mathrm{Q}(12,16) $.
1. a. Find the value of c .   
b. Show that $k=\frac{\pi}{8} $.   
c. Find the value of a .   

The graph of g is obtained from the graph of f by a translation of $\binom{d}{0}$ .
The minimum point on the graph of g has coordinates (6.5,8) .
2. a. Write down the value of d .   
b. Find g(x) .  (代数式) 

The graph of g changes from concave-up to concave-down when $x=\nu$ .
3. a. Find $\nu$ .   
b. Hence, or otherwise, find the maximum positive rate of change of g .≈   

参考答案:     查看本题详细解析

标记此题
49#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The displacement, s , in metres, of53w f yio+ f2oa:xxm2t a particle t seconds after it passes through the orig25xw2 o3oif+xaf: tmyin is given by the expression $s=\ln \left(1+t e^{-t}\right)$,$ t \geq 0$ .
1. Find an expression for the velocity, v , of the particle at time t .  (代数式) 
2. Find an expression for the acceleration, a , of the particle at time t .  (代数式) 
3. Find the acceleration of the particle at time t=0 .   

参考答案:     查看本题详细解析

标记此题
50#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { Use L'Hôpital's rule to determine the value of } \lim _{x \rightarrow 0} \frac{x^{2} e^{2 x}}{1-\cos x}$   

参考答案:     查看本题详细解析

标记此题
51#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Use L'Hôpital's rule tndg,c) wq0z5v o find

$\lim _{x \rightarrow 0} \frac{\arctan (3 x)}{\tan (4 x)}$

  

参考答案:     查看本题详细解析

标记此题
52#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Note: In this question, distance is in mp4)+;mvpatufq7 q1 jwhl;i,retres and time is in seconds.
A particle P moves in a straight line for six seconds. Its acceleration during this period is given by $a(t)=-2 t^{2}+13 t-15 $, for $0 \leq t \leq 6$ .
1. Write down the values of t when the particle's acceleration is zero.      
2. Hence or otherwise, find all possible values of t for which the velocity of P is increasing.$a\lt t \lt b$ a =    b =   

The particle has an initial velocity of 7 $\mathrm{~ms}^{-1}$ .
3. Find an expression for the velocity of P at time t .  (代数式) 
4. Find the total distance travelled by P when its velocity is decreasing.   

参考答案:     查看本题详细解析

标记此题
53#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { The diagram below shows the graph of } f(x)=a \sin (k(x-d))+c \text {, for } 2 \leq x \leq 14 \text {. }$



The graph of f has a maximum at $\mathrm{P}(5,15)$ and a minimum at $\mathrm{Q}(11,-5)$ .
1. Write down the value of:
a. a ;   
b. c .   
2. a. Show that $k=\frac{\pi}{6}$ .   
b. Find the smallest possible value of d , given d>0 .   
3. Find $f^{\prime}(x)$ .  (代数式) 
4. At a point R , the gradient is $-\frac{5 \pi}{3}$ . Find the x -coordinate of R .   

参考答案:     查看本题详细解析

标记此题
54#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let $f(x)=\sqrt{2 x+1}$ for $x \geq-0.5$ .
1. Find
a. $f(12)$ ;   
b. $f^{\prime}(12)$   

Consider another function g(x) . Let P be a point on the graph g . The x -coordinate of P is 12 . The equation of the tangent to the graph at P is y=x+3 .
2. Write down $g^{\prime}(12)$ .   
3. Find g(12) .   
4. Let $ h(x)=f(x) \times g(x) $. Find the equation of the tangent of h at the point where x=12 .  (代数式) 

参考答案:     查看本题详细解析

标记此题
55#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let $f(x)=\sin x-\sqrt{3} \cos x, 0 \leq x \leq 2 \pi$ .
The following diagram shows the graph of f .

The curve crosses the x -axis at A and C and has a maximum at point B .
1. Find the exact coordinates of A and of C . A (a,b) a =    b =    C (c,d) c =    d =   
2. Find $f^{\prime}(x) $.  (代数式) 
3. Find the coordinates of B . B (a,b) a =    b =   

参考答案:     查看本题详细解析

标记此题
56#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $f(x)=\frac{2 x+1}{x-3}$,$ x \in \mathbb{R}$,$ x \neq 3 $
1. a. Find the equation of the vertical and horizontal asymptote of f .
b. Write down the coordinates of the point Q at which the asymptotes intersects.
c. Find the x and y intercepts of f .
2. Show that $f^{\prime}(x)=-\frac{7}{(x-3)^{2}}$ .
3. Hence, find the equation of the tangent at point $\mathrm{P}(4, y) $.
4. The point S also lies on the graph of f . The tangent to S is parallel to the tangent at point P . Find the coordinates of S .
5. Show that Q is the midpoint of [PS].
参考答案:    

标记此题
57#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let $f(x)=16-x^{2}$ , for $x \in \mathbb{R}$ .
1. Find the x -intercepts of the graph of f . x = $\pm $   

The following diagram shows part of the graph of f .

Rectangle ABCD is drawn with $\mathrm{A} \& \mathrm{~B}$ on the x -axis and $\mathrm{C} \& \mathrm{D} $ on the graph of f . Let $\mathrm{OA}=a$ .
2. Show that the area of ABCD is $32 a-2 $a^{3}$$ .  (代数式)  = 0
3. Hence find the value of a>0 such that the area of ABCD is a maximum.   

Let $g(x)=(x-4)^{2}+k$ , for $x \in \mathbb{R}$ , where k is a constant.
4. Show that when the graphs of f and g intersect, 2 x^{2}-8 x+k=0 .  (代数式) 
5. Given that the graphs of f and g intersect only once, find the value of k .   

参考答案:     查看本题详细解析

标记此题
58#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  In a triangle $\mathrm{ABC}, \mathrm{AB}=2 \mathrm{~cm}$, $\mathrm{CBA}=\frac{\pi}{4}$ and $\mathrm{BA} \mathrm{A}= x $ .
1. Show that $\mathrm{AC}=\frac{2}{\cos x+\sin x}$ .  (代数式) 
2. Given that AC has a minimum value, find the value of x for which this occurs.   

参考答案:     查看本题详细解析

标记此题
59#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The curve C is defined lu i i9x u *fy)be5/pbn,c;e:zby the equation $x^{2} y+\ln (x y)=1$, x $\lt$0, y $\lt$0 .
1. Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y .  (代数式) 
2. Determine the equation of the tangent to C at the point $\mathrm{P}(1,1)$.  (代数式) 

参考答案:     查看本题详细解析

标记此题
60#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The function f is defined wp2)atjvx cew 3ad8(0b (fs2kf 4s t6cby




where a and b are real constants.
Given that both f and its derivative are continuous at t=4 , find the value of a and the value of b . a =    b =   

参考答案:     查看本题详细解析

标记此题
61#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Use L'Hôpital's rulehta9x8w oscm,tz(h woh nfe )2(+3mbo,cq9z 6 to determine the value of$\lim _{x \rightarrow 0} \frac{2 \sin ^{2}(x)}{\ln \left(1+x^{2}\right)}$   

参考答案:     查看本题详细解析

标记此题
62#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
$\text { Consider a function with domain } a\lt x \lt b \text {. The following diagram shows the graph of } f^{\prime} \text {, the derivative of } f \text {. }$



From the graph above p, 0 and s are x -intercepts of $f^{\prime}$ , and there is a local minimum at x=q and a local maximum at x=r .
1. Find all the values of x where the graph of f is increasing. Justify your answer.
2. Find the value of x where the graph of f has a local minimum. Justify your answer.
3. Find the value of x where the graph of f has a local maximum. Justify your answer.
4. Find the values of x where the graph of f has points of inflexion. Justify your answer.

The total area of the region enclosed by the graph of $f^{\prime}$ and the x -axis between x=p and x=s is 25 .
5. Given that f(p)+f(s)=13 , find the value of f(0) .
参考答案:    

标记此题
63#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
In a triangle $\mathrm{ABC}$, $\mathrm{BÂC}=60^{\circ}$, $\mathrm{AB}=(1-x) \mathrm{cm}$, $\mathrm{AC}=(x+3)^{2} \mathrm{~cm}$,$-3\lt x \lt 1$
1. Show that the area, $A \mathrm{~cm}^{2}$ , of the triangle is given by

$A=\frac{\sqrt{3}}{4}\left(9-3 x-5 x^{2}-x^{3}\right)$ .

2. a. Calculate $\frac{\mathrm{d} A}{\mathrm{~d} x}$ .
b. Verify that $\frac{\mathrm{d} A}{\mathrm{~d} x}=0 $ when $x=-\frac{1}{3}$ .
c. 1. Find $\frac{\mathrm{d}^{2} A}{\mathrm{~d} x^{2}}$ and hence verify that $ x=-\frac{1}{3}$ gives the maximum area of triangle A B C .
2. Calculate the maximum area of triangle A B C .
3. Find the length of [BC] when the area of triangle A B C is a maximum.

[/BC]
参考答案:    

标记此题
64#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { Let } f(x)=x^{3}+2 x^{2}+k x-3 \text {. Part of the graph of } f \text { is shown in the following diagram. }$



The graph of f crosses the y -axis at the point Q . The line L is tangent to the graph of f at Q .
1. Find the coordinates of Q . y =   
2. a. Find $f^{\prime}(x)$ . f'(x) =  (代数式) 
b. Hence find the equation of L in terms of k . y =  (代数式) 

The graph of f has a local maximum at the point P . The line L passes through P .
3 . Find the value of k .   

参考答案:     查看本题详细解析

标记此题
65#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Consider $f(x)=x \ln (x)-x$ , for x>0
1. Find f(1) .
2. Solve f(x)=0 .

The graph of f has a local minimum at point $\mathrm{P}(x, y)$ .
3. Find the coordinates of point P and explain why it is a local minimum.
4. Find the set of x values for which f is increasing.
5. Hence, sketch the graph of f , for x>0 .
参考答案:    

标记此题
66#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The displacement, in centimeters, of a particle from an origin, O , at mu;7( 0eltxz ktime t seconds, is given bm kute z(;7lx0y $s(t)=t \sin 2 t-7 \sin t \cos t, 0 \leq t \leq 3$ .
1. Find the maximum distance of the particle from O .
2. Find the acceleration of the particle at the instant it changes direction for the the second time.
参考答案:    

标记此题
67#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $f(x)=\frac{1}{3} x^{3}+2 x^{2}-5 x+10$ .
1. Find $f^{\prime}(x)$ .

The graph of f has horizontal tangents at the points where x=a and x=b, a$\lt$b .
2. Find the value of a and the value of b .
3. a. Sketch the graph of $y=f^{\prime}(x)$ .
b. Hence explain why the graph of f has a local maximum point at x=a .
4. a. Find $f^{\prime \prime}(b)$ .
b. Hence, use your answer to part (d) (i) to show that the graph of f has a local minimum point at x=b .

The tangent to the graph of f at x=a and the normal to the graph of f at x=b intersect at the point (p, q) .
5. Find the value of p and the value of q .
参考答案:    

标记此题
68#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $f(x)=(x+1) e^{-2 x}, x \in \mathbb{R}$
1. Find $f^{\prime}(x)$ .
2. Prove by induction that $\frac{\mathrm{d}^{n} f}{\mathrm{~d} x^{n}}=\left[n(-2)^{n-1}+(-2)^{n}(x+1)\right] e^{-2 x}$ for all $ n \in \mathbb{Z}^{+}$ .
参考答案:    

标记此题
69#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Consider the ellipse defined by the zc;kdz, 80ud l0geg)r5km 9s eequation $x^{2}+3 y^{2}=12$ .
1. Find the equation of the normal to the ellipse at the point $\mathrm{P}(3,1)$ .y =  (代数式) 
2. Find the volume of the solid formed when the region bounded by the ellipse, the x -axis for $x \geq 0$ and the y -axis for $y \geq 0$ is rotated through $2 \pi$ about the y -axis.   

参考答案:     查看本题详细解析

标记此题
70#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Air is being pumped into a spherical balloon so that its qiexdk pez* -7: w+u/jvolume is increasing at a consta-p: dzq*uijw7ek/e+ xnt rate of $15 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$ . Find the rate at which the surface area of the balloon is increasing when its radius hits 10 cm .
The surface area S and the volume V of a sphere of radius r are given by $S=4 \pi r^{2}$ and $V=\frac{4}{3} \pi r^{3}$ .
参考答案:    

标记此题
71#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Consider a function f . The line31 dx;tbu3i bd6wk;zo $L_{1}$ with equation y=2 x-1 is a tangent to the graph of f when x=3 .
1. a. Write down $f^{\prime}(3)$ .
b. Find f(3) .

Let $g(x)=f\left(x^{2}-1\right)$ and P be the point on the graph of g where x=2 .
2. Show that the graph of g has a gradient of 8 at P .

Let $L_{2}$ be the tangent to the graph of g at P . The line $ L_{1}$ intersects $ L_{2}$ at the point Q .
3. Find the y -coordinate of Q .
参考答案:    

标记此题
72#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $y=\left(x^{2}+x\right)^{\frac{s}{2}}$ , for $x \geq 0$ .
1. Find $ \frac{\mathrm{d} y}{\mathrm{~d} x}$ .
2. Hence find $\int(2 x+1) \sqrt{x^{2}+x} \mathrm{~d} x$.

Consider the functions $ f(x)=\frac{1}{4} \sqrt{x^{2}+x}$ and $g(x)=5-\frac{x}{2} \sqrt{x^{2}+x}$ , for $x \geq 0$ . The graphs of f and g are shown in the following diagram.

The shaded region S is enclosed by the graph of f , the graph of g , the y -axis and the line x=2 .
3. Write down an expression for the area of S .
4. Hence find the exact area of S .
参考答案:    

标记此题
73#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Consider the functionx sdkfbtr - njfr85v6nuub8-/1 pp-a - f defined by $f(x)=2 \ln (24-1.5 x)$ for x $\lt $16 .
The line $L_{1}$: y=x intersects the graph of f at point P .
The line $L_{2}$ is perpendicular to $L_{1}$ and tangent to the graph of f at point Q .

1. Find the x -coordinate of point P , to three significant figures. ≈   
2. a. Find the exact coordinates of point Q . (a,b) a =    b =   
b. Show that the equation of $ L_{2}$ is $y=-x+2 \ln 3+14$ .  (代数式) 

The shaded region A , as shown in the previous diagram, is enclosed by the graph of f , the line $L_{1}$ and the line $L_{2}$
3. a. Find the exact x -coordinate of the point where $L_{2}$ intersects $L_{1}$ .   
b. Hence, find the area of A , to two decimal places.≈   

The line $ L_{2}$ is also tangent to the graph of the inverse function $f^{-1}$ .

$\text { 4. Find the shaded area enclosed by the graphs of } f, f^{-1} \text { and the line } L_{2} \text {. }$   

参考答案:     查看本题详细解析

标记此题
74#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $f(x)=2 e^{\frac{x}{5}}$ and g(x)=m x , where $m \geq 0$ , and $-6 \leq x \leq 6$ . Let R be the region enclosed by the y -axis, the graph of f , and the graph of g .
1. Let m=2 .
1. Sketch the graphs of f and g on the same axes.
2. Find the area of R .
2. Consider all values of m such that the graphs of f and g intersect. Find the value of m that gives the greatest value for the area of R .
参考答案:    

标记此题
75#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A biased coin is tossed 10 times. u qw 6*7wbten-p2f( 7f hjxkl)Let X be the number of tails obtained.
The probability of obtaining a tail in any one throw is p>0 .
1. Find, in terms of p , an expression for $\mathrm{P}(X=8)$ .  (代数式) 
2. a. Determine the value of p for which $\mathrm{P}(X=8)$ is a maximum.   
b. For this value of p , determine the expected number of tails.   

参考答案:     查看本题详细解析

标记此题
76#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Consider the curve defined byi7q/xehrp 2 7c the equation $x^{5}+y^{5}=5 x^{2} y$ .
1. Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 x y-x^{4}}{y^{4}-x^{2}}$ .  (代数式) 

The normal to this curve is parallel to the y -axis at the point where x=h, h>0 .
2. Find the value of h , giving your answer correct to two decimal places. ≈   

参考答案:     查看本题详细解析

标记此题
77#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
A ladder of length 13 m restvidkjo, muan8+ 2a6 1cs on horizontal ground and leans against a vertical wall. The bottom of the ladder is pullednj i+cvdaa6k 8u o,21m away from the wall at a constant speed of $1.2 \mathrm{~ms}^{-1}$ . Calculate the speed of descent of the top of the ladder when the bottom is 5 m away from the wall.
参考答案:    

标记此题
78#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Farmer Thomas wants to build a sheep farming field in the shape of a rect;oyxyi j 0n- kcie;*0yangle with semicircles of radius r on two sides, as shokxo;0* 0ie n yij-y;cywn on the diagram. He has decided to use in total 350 metres of wooden fencing.


1. 1. Find an expression for the area of the farming field in terms of r .
2. Find the width of the farming field when the area is a maximum.
2. Show that in this case the length of the rectangle is equal to zero and the farming field is the circle of radius 175 $\pi^{-1}$ metres.
参考答案:    

标记此题
79#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A curve has equation 7:zhm,o bwkxfk 3,)xx) *jhoj$2 y^{2} e^{x+1}-5 x^{2}=3$ .
1. Find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y .  (代数式) 
2. Find the equations of the tangents to this curve when x=-1 . y = $\pm$    m = $\pm$   

参考答案:     查看本题详细解析

标记此题
80#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { A bird is } 4 \mathrm{~km} \text { East and } 6 \mathrm{~km} \text { North of its nest. It is flying East at a rate of } 14 \mathrm{~km} \mathrm{~h}^{-1} \text { and North at a rate of } 18 \mathrm{~km} \mathrm{~h}^{-1} \text {. Calculate the rate that its distance from the nest is changing. }$≈   

参考答案:     查看本题详细解析

标记此题
81#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Consider the functions f, g , defined fo.: :o,mfaqd.8 j kh- 7lrapycbr $x \in \mathbb{R}$ , given by $f(x)=e^{2 x} \sin x$ and $g(x)=e^{2 x} \cos x$ .
1. Find
a. $f^{\prime}(x)$ ;  (代数式) 
b. $g^{\prime}(x)$ .  (代数式) 
2. Hence, or otherwise, find $\int_{0}^{\pi} e^{2 x} \cos x \mathrm{~d}$ x .  (数值) 

参考答案:     查看本题详细解析

标记此题
82#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Consider the curves z2/ j:oyh;l jvpo p..f6dvpj0$C_{1}$ and $C_{2}$ defined as follows

$\begin{array}{l}
C_{1}: \quad 3 y^{2}+2 x^{2}=5, y>0 \\
C_{2}: \quad y^{2}-5 x^{3}=0, y>0
\end{array}$

1. Using implicit differentiation, or otherwise, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ for each curve in terms of x and y .

Let $\mathrm{P}(a, b)$ be the unique point where the curves $C_{1}$ and $C_{2}$ intersect.
2. Show that the tangent to $C_{1}$ at P is perpendicular to the tangent to $C_{2}$ at P .
参考答案:    

标记此题
83#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { Consider the function } f(x)=\sqrt{\frac{16-4 x^{2}}{7}} \text {, for }-2 \leq x \leq 2 \text {. In the following diagram, the shaded region is enclosed by the graph of } f \text { and the } x \text {-axis. }$



A rainwater collection tank can be modelled by revolving this region by $360^{\circ}$ about the x -axis.
1. Find the volume of the tank.   

Rainwater in the tank is used for drinking, cooking, bathing and other needs during the week.
The volume of rainwater in the tank is given by the function g(t) , for 0 $\leq $t \$leq 7$ , where t is measured in days and g(t) is measured in $\mathrm{m}^{3}$ . The rate of change of the volume of rainwater in the tank is given by $g^{\prime}(t)=1.5-4 \cos \left(0.12 t^{2}\right)$ .
2. The volume of rainwater in the tank is increasing only when aa. Find the value of a and the value of b . a =    b =   
b. During the interval $a\lt t \ltb$ , the volume of rainwater in the tank increases by $d \mathrm{~m}^{3}$ . Find the value of d .   

When t=0 , the volume of rainwater in the tank is 8.2 $\mathrm{~m}^{3}$ . It is known that the tank is never completely full of rainwater during the 7 day period.
3. Find the minimum volume of empty space in the tank during the 7 day period.   

参考答案:     查看本题详细解析

标记此题
84#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let the Maclaurin series forq ( pdu4xnch,1uxm/4fr w 0+pp $\cot x$ be

$\cot x=\frac{a_{1}}{x}+a_{2} x+a_{3} x^{3}+\cdots$

where $a_{1}, a_{2}$ and $ a_{3}$ are non zero constants.
1. Find the series for $\csc ^{2}$ x , in terms of $a_{1}, a_{2}$ and $a_{3}$ , up to and including the $x^{2}$ term
a. by differentiating the above series for $\cot x$ ;
b. by using the relationship $\csc ^{2} x=1+\cot ^{2} x$ .
2. Hence, by comparing your two series, determine the values of $a_{1}, a_{2}$ and $ a_{3}$ .

本题所包含的其它图片:

参考答案:    

标记此题
85#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The function f is defined by o/v 7sksqe1 d*ej3jbd9 0/ter $f(x)=e^{-x} \sin x-x+x^{2}$ .
By finding a suitable number of derivatives of f , determine the first non-zero term in its Maclaurin series.
参考答案:    

标记此题
86#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
A physicist is studying the mo vu8.vv6;hy4tu1qd cftion of two separate particles moving in a straight line. She measures the displacement of each particle from a fixed origin over the course of 10 seconds The physicis.u4v6 dc 1tqy8huv;fv t found that the displacement of particle A, $s_{A} \mathrm{~cm}$ , at time t seconds can be modelled by the function $s_{A}(t)=7 t+9$ , where $ 0 \leq t \leq 10$ .
The physicist found that the displacement of particle B,$s_{B} \mathrm{~cm}$ , at time t seconds can be modelled by the function $s_{B}(t)=\cos (3 t+5)+8 t+4 $.
1. Use the physicist's models to find the initial displacement of
1. Particle A ;
2. Particle B correct to three significant figures.
2. Find the values of t when $s_{A}(t)=s_{B}(t)$ .
3. For t>6 , prove that particle B was always further away from the fixed origin than particle A .
4. For $ 0 \leq t \leq 10$ , find the total amount of time that the velocity of particle A was greater than the velocity of particle B .
参考答案:    

标记此题
87#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
A curve is given by the equation z,/z pafh*k;dcp.i p 3 $y=\cos (2 \pi \sin x)$ .
Find the coordinates of all the points on the curve for which $\frac{\mathrm{d} y}{\mathrm{~d} x}=0,0 \leq x \leq \pi$ .
参考答案:    

标记此题
88#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
A curve is given by the equation s3sd8a q +msp4$y=\cos (2 \pi \cos x)$ .
Find the coordinates of all the points on the curve for which $\frac{\mathrm{d} y}{\mathrm{~d} x}=0,0 \leq x \leq \pi$ .
参考答案:    

标记此题
89#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The function f is defin9d+m 1(b bvbqled by $f(x)=e^{2 x}-4 e^{x}+2$ , for $x \in \mathbb{R}, x \leq a$ , where $a \in \mathbb{R}$ . Part of the graph of y=f(x) is shown in the following diagram.



1. Find the largest value of a such that f has an inverse function.
2. For this value of a , find an expression for $ f^{-1}(x)$ , stating its domain.
参考答案:    

标记此题
90#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The function h is define ,brqf,t7 g4 fa-f)tqrd by $h(x)=\cos (\pi \cos x),-\pi \leq x \leq \pi$ .
1. Determine whether h is even, odd or neither even nor odd.
2. Show that $h^{\prime \prime}(0)=0$ .
3. Jack states that, because $ h^{\prime \prime}(x)=0$ , the graph of h has an inflexion at the point $\mathrm{P}(0,-1)$ . Explain briefly whether Jack's statement is correct or not.
参考答案:    

标记此题
91#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Find the x -coordinates j8 ;+zwrh)y w;anig 0rof all the points on the curve $y=2 x^{4}-\frac{34}{3} x^{3}+\frac{41}{2} x^{2}-10 x$ at which the tangent to the curve is parallel to the tangent at $\mathrm{P}\left(1, \frac{7}{6}\right)$ . x =      

参考答案:     查看本题详细解析

标记此题
92#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A curve is defined byai75tx/ 3;a5uzseb;:6n,jsoy qqd hz $x^{2}+10 x y+y^{2}=48$ .
1. Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{2 x+10 y}{10 x+2 y} $.  (代数式) 
2. Find the equation of the normal to the curve at the point $ \mathrm{P}(-2,22)$ .y =  (代数式) 
3 . Find the distance between the two points on the curve where each tangent is parallel to the line y=-x .   

参考答案:     查看本题详细解析

标记此题
93#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { The double folium is a curve defined by the equation }\left(x^{2}+y^{2}\right)^{2}=8 x y^{2} \text {, shown in the diagram below. }$


\text { Determine the exact coordinates of the point } \mathrm{P} \text { on the curve where the tangent line is parallel to the } x \text {-axis. } (a,b) a =    b =   

参考答案:     查看本题详细解析

标记此题
94#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  An oval-shaped superspeedway can be described by the cur; 4up9cbmc )(5h3a5b fgklstk ve $x^{2}+12 y^{2}=1+10 x^{2} y^{2}$ , shown in the diagram below. A F1 racing car is moving along the track with $\frac{\mathrm{d} x}{\mathrm{~d} t}=240 \mathrm{kmh}^{-1}$ when x=0.67 $\mathrm{~km}$ .


$\text { Find the value of } \frac{\mathrm{d} y}{\mathrm{~d} t} \text {, giving your answer to the nearest } \mathrm{km}^{-1} \text {. }$≈   

参考答案:     查看本题详细解析

标记此题
95#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The function f is defined ctyik 8-4vi2d-2z;gez g vbp5by $f(x)=e^{x} \cos x, x \in \mathbb{R}$ .
1. By finding a suitable number of derivatives of f , determine the Maclaurin series for f(x) as far as the term $x^{4}$ .
2. Hence, or otherwise, determine the exact value of $\lim _{x \rightarrow 0} \frac{e^{x} \cos x-x-1}{x^{3}}$ .
参考答案:    

标记此题
96#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Consider

$\lim _{x \rightarrow 0} \frac{2 \arctan \left(e^{x}\right)-c}{3 x}$

where $ c \in \mathbb{R}$ .
1. Show that a finite limit only exists for $c=\frac{\pi}{2}$ .   
2. Using l'Hôpital's rule, show algebraically that the value of the limit is $\frac{1}{3}$ .   

参考答案:     查看本题详细解析

标记此题
97#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let $f(x)=\frac{\ln \left(8 x^{3}\right)}{k x}$ where x$\lt$0,$k \in \mathbb{R}^{+}$ .
1. Show that $f^{\prime}(x)=\frac{3-\ln \left(8 x^{3}\right)}{k x^{2}} $.  (代数式) 

The graph of f has exactly one maximum point A .
2. Find the x -coordinate of A.   

The second derivative of f is given by $ f^{\prime \prime}(x)=\frac{2 \ln \left(8 x^{3}\right)-9}{k x^{3}}$ . The graph of f has exactly one point of inflexion B ,
3. Show that the x -coordinate of B is $\frac{e^{3 / 2}}{2}$ .   

The region R is enclosed by the graph of f , the x -axis, and the vertical lines through the maximum point A and the point of inflexion B .

$\text { 4. Given that the area of } R \text { is } 5 \text {, find the value of } k \text {. }$   

参考答案:     查看本题详细解析

标记此题
98#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
A particle moves sucbj u0x2q8sg1d h that its velocity v$ \mathrm{~m} \mathrm{~s}^{-1} $ is related to its displacement s $\mathrm{~m}$ by the equation v(s)=2$ \arctan (\cos s), 0 \leq s \leq \pi$ .
1. Find the particle's acceleration a $\mathrm{~m} \mathrm{~s}^{-2}$ in terms of s .
2. Using an appropriate graph, find the particle's displacement when its acceleration is 0.5$ \mathrm{~m} \mathrm{~s}^{-2}$ .
参考答案:    

标记此题
99#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  1. Use L'Hôpital's rule to determine the valr2(gvg+i h7 -jaczag9xj,( laue of $\lim _{x \rightarrow 0} \frac{e^{-5 x^{2}}-2 \cos (5 x)+1}{4 x^{2}} $.   
2. Hence find $\lim _{x \rightarrow 0} \frac{\int_{0}^{x}\left(e^{-5 t^{2}}-2 \cos (5 t)+1\right) \mathrm{d} t}{\int_{0}^{x} 4 t^{2} \mathrm{~d} t}$ .   

参考答案:     查看本题详细解析

标记此题
100#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
1. By successive differentxw, zwwq18 ffn .:qderu)t, k3iation find the first five non-zero terms in the Maclaurin series f,,enfq )zw w31uqwfk:dxt.8 ror $f(x)=(2-2 x) \ln (1-x)+2 x $.
2. Deduce that, for $n \geq 2$ , the coefficient of $x^{n}$ in this series is $\frac{2}{n(n-1)}$ .
参考答案:    

标记此题
101#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Consider the function -p.k)kcx vxb/$f(x)=\sqrt{\frac{10}{x^{2}}-1}$ , where $1 \leq x \leq \sqrt{10}$ .
1. Sketch the curve y=f(x) , indicating the coordinates of the endpoints.
2. 1. Show that $ f^{-1}(x)=\sqrt{\frac{10}{x^{2}+1}}$ .
2. State the domain and range of f^{-1} .

The curve y=f(x) is rotated through $2 \pi$ about the y -axis to form a solid of revolution that is used to model a vase.
3. 1. Show that the volume V $\mathrm{~cm}^{3}$ , of liquid in the vase when it is filled to a height of h centimetres is given by $V=10 \pi \arctan (h)$ .
2. Hence, determine the volume of the vase.

At t=0 , the vase is filled to its maximum volume with water. Water is then removed from the vase at a constant rate of 4 $\mathrm{~cm}^{3} \mathrm{~s}^{-1}$ .
4. Find the time it takes to completely empty the vase.
5. Find the rate of change of the height of the water when half of the water has been emptied from the vase.
参考答案:    

标记此题
102#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Consider the functions f and g /23iy vprc/m,p d0y-;la tpg udefined on the domain $0\lt x \lt 2$ $\pi$ by

$f(x)=4 \cos 2 x \quad \text { and } \quad g(x)=2-8 \cos x$ .


The following diagram shows the graphs of y=f(x) and y=g(x) .


1. Find the x -coordinates of the points of intersection of the two graphs.      
2. Find the exact area of the shaded region, giving your answer in the form $a \pi+b \sqrt{3}$ , where a, b $\in \mathbb{Q}$ . At the points P and Q on the diagram, the gradients of the two graphs are equal.   
3. Determine the y -coordinate of P on the graph of g .   

参考答案:     查看本题详细解析

标记此题
103#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
A water truck tank which is 3 metres long has nc4lm2hr+ +q 2/swste a uniform cross-section in the shape of a major segment. The tank is divided into two equal parts and is partialscwh+ rm/n e4+lqt2s2 ly filled with water as shown in the following diagram of the cross-section. The centre of the circle is O , the angle AOB is $\alpha$ radians, and the angle AOF is $\beta$ radians.

1. Given that $\alpha=\frac{\pi}{4}$ , calculate the amount of water, in litres, in the right part of the water tank. Give your answer correct to the nearest integer.
2. Find an expression for the volume of water V , in $ \mathrm{m}^{3}$ , in the left part of the water tank in terms of $\beta$ .
he left part of the tank is now being filled with water at a constant rate of 0.001 $\mathrm{~m}^{3}$ per second.
3. Calculate $\frac{\mathrm{d} \beta}{\mathrm{d} t}$ when $\beta=\frac{3 \pi}{5} $. Round your answer to 3 significant figures.
4. Calculate the amount of time it will take for the left part of the tank to be fully filled with water. Give your answer in minutes and correct to the nearest integer.
参考答案:    

标记此题
104#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Consider the functionsb *b dl ana(w9;x0r;ui $f(x)=\sin x,-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$ and $g(x)=\frac{2 x \sqrt{1-x^{2}}}{1-2 x^{2}}$, $x \in \mathbb{R}$, x$ \neq \pm \frac{1}{\sqrt{2}}$ .
1. Find an expression for $(g \circ f)(x)$ , stating its domain.
2. Hence show that $(g \circ f)(x)=\tan 2 x$ .
3. Letting $y=(g \circ f)(x)$ , find an exact value for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $ x=\frac{\pi}{3}$ .
4. Show that the area bounded by the graph of $y=(g \circ f)(x)$ , the x -axis and the lines x=0 and $x=\frac{\pi}{3}$ is $\frac{1}{2} \ln 2$ .
参考答案:    

标记此题
105#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
A curve is defined by .nggpz qh:p e40 u:)wu$x^{2}+y^{2}-3 x y+45=0 $.
1. Show that $ \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3 y-2 x}{2 y-3 x}$ .
2. Find the equation of the normal to the curve at the point (21,9) .
3. Find the distance between the two points on the curve where each tangent is perpendicular to the y -axis.
参考答案:    

标记此题
106#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The curve C is defined bys8+ s46hvd4zoken m ,b the equation $y^{2}+4 x y+e^{x}=10$ . The point $ \mathrm{P}(0, b)$ lies on C where b$\lt$0 .
1. Find the value of b .
2. Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{4 y+e^{x}}{2 y+4 x}$ .
3. Find the equation of the normal to C at the point P .
4. Find the coordinates of the second point at which the normal found in part (c) intersects C .
5. Given that $ u=y^{4}$, y$\lt$0 , find $\frac{\mathrm{d} u}{\mathrm{~d} x} $ at x=0 .
参考答案:    

标记此题
107#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $ f(x)=e^{x} \cos x$ .
1. Show that $f^{\prime \prime}(x)=2\left(f^{\prime}(x)-f(x)\right)$ .
2. By further differentiation of the result in part (a), find the Maclaurin expansion of f(x) , as far as the term in $x^{5}$ .
参考答案:    

标记此题
108#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Consider the function b ) q i6+-hdh,l:pmb uk1h(phi$ g(x)=a x^{3}+b x^{2}+c x+d$ , where x$ \in \mathbb{R} $ and a, b, c, d $\in \mathbb{R}$ .
1. 1. Write down an expression for $ g^{\prime}(x)$ .
2. Hence, given that $g^{-1}$ does not exist, show that $ b^{2}-3$ a c$\lt $0 .

Consider the function $f(x)=\frac{x^{3}}{2}+3 x^{2}+6 x+\frac{9}{2}$
2. 1. Show that $f^{-1}$ exists.
2. f(x) can be written in the form p(x+2)^{3}+q , where p, q$ \in \mathbb{R}$ . Find the value of p and the value of q .
3. Hence, find $ f^{-1}(x)$ .

The graph of f(x) may be obtained by transforming the graph of $y=x^{3}$ using a sequence of three transformations.
3. State each of the transformations in the order in which they are applied.
4. Sketch the graphs of y=f(x) and $y=f^{-1}(x)$ on the same set of axes, indicating the points where each graph crosses the coordinate axes.
参考答案:    

标记此题
109#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $f(x)=(x-1) e^{\frac{t}{3}}$, for $x \in \mathbb{R}$
1. Find $f^{\prime}(x) $.
2. Prove by induction that $ \frac{\mathrm{d}^{n} f}{\mathrm{~d} x^{n}}=\left(\frac{3 n+x-1}{3^{n}}\right) e^{\frac{x}{3}} $ for all $n \in \mathbb{Z}^{+}$ .
3. Find the coordinates of any local maximum and minimum points on the graph of y=f(x) . Justify whether such point is a maximum or a minimum.
4. Find the coordinates of any points of inflexion on the graph of y=f(x) . Justify whether such point is a point of inflexion.
5. Hence sketch the graph of y=f(x) , indicating clearly the points found in parts (c) and (d) and any intercepts with the axes.
参考答案:    

标记此题
110#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $f(x)=x^{4}-0.4 x^{3}-2.85 x^{2}+0.9 x+1.35$ , for $x \in \mathbb{R}$ .
1. Find the solutions for $f(x)\lt 0$ .
2. For the graph of y=f(x) ,
1. find the coordinates of local minimum and maximum points.
2. find the x -coordinates of the points of inflexion.

The domain of f is now restricted to [a, b] where a, b $\in \mathbb{R}^{+}$.
3. 1. Write down the smallest value of $a\lt 0$ and the largest value of b>0 for which f has an inverse. Give your answers correct to three significant figures.
2. For these values of a and b , sketch the graphs of y=f(x) and $y=f^{-1}(x)$ on the same set of axes, showing clearly the coordinates of the end points of each curve.
3. Solve $f^{-1}(x)=0.5$ .

Let $g(x)=\frac{2}{3} \sin (2 x-1)+\frac{1}{2}, \frac{1}{2}-\frac{\pi}{4} \leq x \leq \frac{1}{2}+\frac{\pi}{4}$ .
4. 1. Find an expression for $g^{-1}$ and state its domain.
2. Solve $ \left(f^{-1} \circ g\right)(x) \lt 0.5$ .
参考答案:    

标记此题
111#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Consider the functiona jy, ma uvbf)82tb-wh3l x1u5 $f(x)=\frac{\sqrt{x}}{2 \cos x}, \frac{\pi}{2}1. 1. Show that the x -coordinate of the maximum point on the curve y=f(x) satisfies the equation $1+2 x \tan x=0 $.
2. Determine the values of x for which f(x) is an increasing function.
2. Sketch the graph of y=f(x) , showing clearly the maximum point and any asymptotic behaviour.
3. Find the coordinates of the point on the curve y=f(x) where the normal to the curve is perpendicular to the line y=x . Give your answers correct to two decimal places.

Consider the region bounded by the curve y=f(x) , the x -axis and the lines

$x=\frac{3 \pi}{4}, x=\frac{4 \pi}{3} \text {. }$

4. The region is now rotated through $2 \pi$ radians about the x -axis. Find the volume of revolution, giving your answer correct to two decimal places.
参考答案:    

标记此题
112#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Consider the function definev2-o8 i-j+u.hbk ux pw, fc,sjd by $ f(x)=(1-x) \sqrt{2 x-x^{2}} $ where $0 \leq x \leq 2 $.
1. Show that f(1-x)=-f(1+x) , for $-1 \leq x \leq 1 $.
2. Find $f^{\prime}(x)$ .
3. Hence find the x -coordinates of any local minimum or maximum points.
4. Find the range of f .
5. Sketch the graph of y=f(x) , indicating clearly the coordinates of the x -intercepts and any local maximum or minimum points.
6 . Find the area of the region enclosed by the graph of y=f(x) on the x -axis, for $ 0 \leq x \leq 1$ .
7. Show that $\int_{0}^{2}|f(x)| d x>\left|\int_{0}^{2} f(x) d x\right| $.
参考答案:    

标记此题
113#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
$\text { The following graph shows the relation } x=5 \sin \left(\frac{\pi y}{30}\right)+10,0 \leq y \leq 60 \text {. }$


The curve is rotated $360^{\circ}$ about the y -axis to form a volume of revolution.
1. Calculate the value of the volume generated.

A vase with this shape is made with a solid base of diameter 20 cm . The vase is filled with water from a faucet at a constant rate of 150 $\mathrm{~cm}^{3} \mathrm{sec}^{-1}$ . At time $t \mathrm{sec}^{2}$ , the water depth is h $\mathrm{cm}, 0 \leq h \leq 60$ and the volume of water in the vase is V $\mathrm{~cm}^{3}$ .
2. 1. Given that $\frac{\mathrm{d} V}{\mathrm{~d} h}=\pi\left[5 \sin \left(\frac{\pi h}{30}\right)+10\right]^{2}$ , find an expression for $\frac{\mathrm{d} h}{\mathrm{~d} t}$.
2. Find the value of $\frac{\mathrm{d} h}{\mathrm{~d} t} $ when $h=45 \mathrm{~cm}$ .
3. 1. Find $\frac{\mathrm{d}^{2} h}{\mathrm{~d} t^{2}}$
2. Find the values of h for which $\frac{\mathrm{d}^{2} h}{\mathrm{~d} t^{2}}=0 $.
3. By making specific reference to the shape of the vase, interpret $\frac{\mathrm{d} h}{\mathrm{~d} t}$ at the values of h found in part (c) (ii).
参考答案:    

标记此题
114#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Consider the functio yv: l *zb/t9jj3i;a kva8cc.:cgg,bt n $f(x)=\frac{a e^{-x}}{b-a e^{-x}}$ where $\lt 0, b\lt0$ .
1. Show that $ f^{\prime}(x)=\frac{-a b e^{-x}}{\left(b-a e^{-x}\right)^{2}} $.
2. Explain why $f^{\prime \prime}(x)$ is never zero.
3. Find the equation of:
1. the vertical asymptote of f ;
2. the horizontal asymptote of f .
4. Draw a sign diagram for $f^{\prime}(x)$ .
5. If a=3 and b=1 ,
1. sketch the graph of f labelling all asymptotes;
2. find the area of the region enclosed by f , the x and y axes and the line $x=\ln 2 $.
参考答案:    

标记此题
115#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $f(x)=\frac{x^{3}+x-2}{2 x}, x \in \mathbb{R}, x \neq 0$ .
1. The graph of y=f(x) has a local minimum at A . Find the coordinates of A .
2. 1. Show that there is exactly one point of inflexion, B , on the graph of y=f(x) .
2. The coordinates of B can be expressed in the form $\mathrm{B}\left(2^{p}, 2^{q}\right) $, where p, q $\in \mathbb{Q} $. Find the value of p and the value of q .
3. Sketch the graph of y=f(x) showing clearly the position of the points A and B .
参考答案:    

标记此题
116#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The function f is defin8h9jr)/gu2nls xd .a ziiqx 69ed by $f(x)=(\arccos x)^{2},-1 \leq x \leq 1$ .
1. Show that $f^{\prime}(0)=-\pi$

The function f satisfies the equation

$\left(1-x^{2}\right) f^{\prime \prime}(x)-x f^{\prime}(x)=2$ .

2. By differentiating the above equation twice, show that

$\left(1-x^{2}\right) f^{(4)}-5 x f^{\prime \prime \prime}(x)=4 f^{\prime \prime}(x)$

where f^{(n)}(x) denotes the n th derivative of f(x) .
3. Hence show the Maclaurin series for f(x) up to and including the term in $x^{4}$ is $\frac{\pi^{2}}{4}-\pi x+x^{2}-\frac{\pi}{6} x^{3}+\frac{x^{4}}{3} $.
4. Use this series approximation for f(x) with $ x=\frac{1}{2}$ to find an approximate value for $25 \pi-\frac{20}{3} \pi^{2}$ .
参考答案:    

标记此题
117#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
1. Use L'Hôpital's rule to findj/x9. mk w yv/ l;psezoy3tt7- $\lim _{x \rightarrow \infty} x^{3} e^{-x}$ .
2. Show that the proper integral $\int_{0}^{\infty} x^{3} e^{-x} \mathrm{~d} x$ converges, and state its value.
参考答案:    

标记此题
118#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Consider the functionbcs jn/120j +n sy5vyn $f(x)=-2 \sin ^{2} x+3 \sin 2 x+\tan x-3,0 \leq x<\frac{\pi}{2}$ .
1. 1. Determine an expression for $f^{\prime}(x)$ in terms of x .
2. Sketch the graph of $y=f^{\prime}(x) for 0 \leq x<\frac{\pi}{2} $.
3. Find the x -coordinate(s) of the point(s) of inflexion of the graph of y=f(x) , labelling these clearly on the graph of $y=f^{\prime}(x)$ .
2. Let $u=\tan x$.
1. Express $\sin x$ in terms of u .
2. Express $\sin 2 x $ in terms of u .
3. Show that f(x)=0 can be expressed as $u^{3}-5 u^{2}+7 u-3=0$.
3. Solve the equation f(x)=0 , giving your answers in the form $\arctan p$, where $ p \in \mathbb{Z}$ .
参考答案:    

标记此题
119#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
This question ask you to investigate the rqew( bl0ax,h ali+5o,elationship between the number of sides and thlo0wl h,a+xaq, i(5b ee area of an enclosure with a given perimeter.
A farmer wants to create an enclosure for his chickens, so he has purchased 28 meters of chicken coop wire mesh.
1. Initially the farmer considers making a rectangular enclosure.
1. Complete the following table to show all the possible rectangular enclosures with sides of at least 4 m he can make with the 28 m of mesh. The sides of the enclosure are always a whole number of metres.

2. What is the name of the shape that gives the maximum area?

The farmer wonders what the area will be if instead of a rectangular enclosure he uses an equilateral triangular enclosure.
2. Show that the area of the triangular enclosure will be $\frac{196 \sqrt{3}}{9} $.

Next, the farmer considers what the area will be if the enclosure has the form of a regular pentagon.
The following diagram shows a reqular pentagon.


Let O be the centre of the regular pentagon. The pentagon is divided into five congruent isosceles triangles and angle $A \widehat{O}$ B is equal to $\theta $ radians.
3. 1. Express $\theta$ in terms of $\pi$ .
2. Show that the length of OA is $\frac{14}{5}$$ \operatorname{cosec}\left(\frac{\pi}{5}\right) \mathrm{m}$ .
3. Show that the area of the regular pentagon is $\frac{196}{5} \cot \left(\frac{\pi}{5}\right) \mathrm{m}^{2} $.

Now, the farmer considers the case of a regular hexagon.
4. Using the method in part (c), show that the area of the regular hexagon is

$\frac{196}{6} \cot \left(\frac{\pi}{6}\right) \mathrm{m}^{2}$

The farmer notices that the hexagonal enclosure has a larger area than the pentagonal enclosure. He considers now the general case of an n -sided regular polygon. Let A_{n} be the area of the n -sided regular polygon with perimeter of 28 m .
5. Show that $A_{n}=\frac{196}{n} \cot \left(\frac{\pi}{n}\right)$ .
6. Hence, find the area of an enclosure that is a regular 14-sided polygon with a perimeter of 28 m . Give your answer correct to one decimal place.
7. 1. Evaluate $\lim _{n \rightarrow \infty} A_{n}$
2. Interpret the meaning of the result of part (g) (i).
参考答案:    

标记此题
120#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $f(x)=(x+1) e^{-2 x}, x \in \mathbb{R}$ .
1. Find $\frac{\mathrm{d} f}{\mathrm{~d} x}$ .
2. Prove by induction that $\frac{\mathrm{d}^{n} f}{\mathrm{~d} x^{n}}=\left[n(-2)^{n-1}+(-2)^{n}(x+1)\right] e^{-2 x}$ for all $ n \in \mathbb{Z}^{+}$ .
3. Find the coordinates of any local minimum and maximum points on the graph of y=f(x) . Justify whether any such point is a minimum or a maximum.
4. Find the coordinates of any points of inflexion on the graph of y=f(x) . Justify whether any such point is a point of inflexion.
5. Hence sketch the graph of y=f(x) , indicating clearly the points found in parts (c) and (d) and any intercepts with the axes.
参考答案:    

标记此题
121#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $y=e^{-\frac{x}{2}} \cos \left(\frac{x}{2}\right)$
1. Find an expression for $ \frac{\mathrm{d} y}{\mathrm{~d} x}$ .
2. Show that $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{1}{2} e^{-\frac{x}{2}} \sin \left(\frac{x}{2}\right)$

Consider the function f defined by $f(x)=e^{-\frac{x}{2}} \cos \left(\frac{x}{2}\right),-\pi \leq x \leq \pi$ .
3. Show that the function f has a local maximum value when $ x=-\frac{\pi}{2} $.
4. Find the x -coordinate of the point of inflexion of the graph of y=f(x) .
5. Sketch the graph of y=f(x) , clearly indicating the positions of the local maximum point, the point of inflexion and the intercepts with the axes.
6. Find the area of the region enclosed by the graph of y=f(x) and the x -axis.

The curvature at any point (x, y) on a graph is defined as $\kappa=\frac{\left|\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right|}{\left[1+\left[\frac{\mathrm{d} y}{\mathrm{~d} x}\right]^{2}\right]^{\frac{3}{2}}}$ .
7. Find the value of the curvature of the graph of y=f(x) at the local maximum point.
8. Find the value of $\kappa $ for x=0 and comment on its meaning with respect to the shape of the graph.
参考答案:    

标记此题
122#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
A curve C is given by the i p )juiev2 30bguunx34mplicit equation $x-y+\sin (x y)=0$.
1. Show that $ \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1+y \cos (x y)}{1-x \cos (x y)}$.
2. The curve $x y=\pi$ intersects C at P and Q .
a. Find the coordinates of P and Q .
b. Given that the gradients of the tangents to C at P and Q are $m_{1}$ and $m_{2}$ respectively, show that $ m_{1} \cdot m_{2}=1$ .
3. Find the coordinates of the three points on C , nearest to the origin, where the tangent is parallel to the line y=x .
参考答案:    

标记此题
123#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The function f is demqe f)fq(n8, lt 1vyo(fined by $f(x)=e^{\arctan x} $.
1. Find the first two derivatives of f(x) and hence find the Maclaurin series for f(x) up to and including the $x^{2}$ term.
2. Show that the coefficient of $x^{3}$ in the Maclaurin series for f(x) is $-\frac{1}{6} $.
3. Using the Maclaurin series for $\sin x$ and $\ln (2 x+1)$ , find the Maclaurin series for $\sin (\ln (2 x+1))$ up to and including the $ x^{3} $ term.
4. Hence, or otherwise, find $\lim _{x \rightarrow 0} \frac{f(x)-1}{\sin (\ln (2 x+1))} $.
参考答案:    

标记此题
124#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Consider the functionb u(yjdhc(m-je h;n;4 $f(x)=\cos (p \arccos x),$-1 \lt x \lt 1$ and p \in \mathbb{R}$ .
1. Show that $f^{\prime}(0)=p \sin \left(\frac{p \pi}{2}\right) $.

The function f and its derivative satisfy

$\left(1-x^{2}\right) f^{(n+2)}(x)=(2 n+1) x f^{(n+1)}(x)+\left(n^{2}-p^{2}\right) f^{(n)}(x), \quad n \in \mathbb{N}$

where $f^{(n)}(x)$ denotes the n th derivative of f(x) and $f^{(0)}(x)$ is f(x) .
2. Show that $ f^{(n+2)}(0)=\left(n^{2}-p^{2}\right) f^{(n)}(0)$ .
3. For $p \in \mathbb{R} \backslash\{ \pm 1, \pm 2, \pm 3\}$ , show that the Maclaurin series for f(x) , up to and including the x^{4} term, is

$\begin{array}{l}
\cos \left(\frac{p \pi}{2}\right)+p \sin \left(\frac{p \pi}{2}\right) x-\frac{p^{2} \cos \left(\frac{p \pi}{2}\right)}{2} x^{2} \\
+ \frac{\left(1-p^{2}\right) p \sin \left(\frac{p \pi}{2}\right)}{6} x^{3}-\frac{\left(4-p^{2}\right) p^{2} \cos \left(\frac{p \pi}{2}\right)}{24} x^{4}
\end{array}$

4. Hence or otherwise, find $\lim _{x \rightarrow 0} \frac{\cos (p \arccos (x))}{x}$ where p is an odd integer.
5. If p is an integer, prove the Maclaurin series for f(x) is a polynomial of
参考答案:    

标记此题
125#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Consider the function defined by kx 3 gv2yb6/gbhsyh(1x tifk.ff*5b- $ f(x)=(2 x-6) \ln (x+3)+x $ for $x \in \mathbb{R}$, $x\lt p$ .
1. Find the value of p .
2. Find an expression for $f^{\prime}(x)$ .

The graph of y=f(x) has no points of inflexion.
3. Determine if the graph of y=f(x) is concave down or concave up over its domain.

The function g is defined by g(x)=3$\ln \left(\frac{1}{x+3}\right)+x$ , for $x \in \mathbb{R}$, $x\lt -3$ .
4. Find an expression for $g^{\prime}(x)$ .
5. Find the horizontal and vertical asymptotes of $g^{\prime}(x)$ .
6 . Find the exact value of the minimum of y=g(x) .
7. Solve $f(x)\lt g(x)$ for $x \in \mathbb{R}, x\lt -3$ .
参考答案:    

标记此题
126#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
A function f(x) isjyv 46 rgl6yy/ defined by $ f(x)=\arccos \left(\frac{x^{2}-1}{x^{2}+1}\right), x \in \mathbb{R}$ .
1. Show that f is an even function.
2. Find the equation of the horizontal asymptote to the graph of y=f(x) .
3. 1. Show that $f^{\prime}(x)=-\frac{2 x}{\sqrt{x^{2}}\left(x^{2}+1\right)} $ for $x \in \mathbb{R},$ $x \neq 0 $.
2. Using the expression for $f^{\prime}(x)$ and the result $\sqrt{x^{2}}=|x|$ , show that f is increasing for $x\lt 0$ .

A function g is defined by $ g(x)=\arccos \left(\frac{x^{2}-1}{x^{2}+1}\right), x \in \mathbb{R}$, $x \geq 0 $.
4. Find the range of g .
5. Find an expression for $g^{-1}(x)$ .
6. State the domain of $g^{-1}(x)$ .
7. Sketch the graph of $y=g^{-1}(x)$ . Clearly indicating any asymptotes with their equations and stating the values of any axes intercepts.
参考答案:    

标记此题
127#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $ f(x)=\frac{1}{\sqrt{1-x}}, x\lt 1 $.
1. Show that $f^{\prime \prime}(x)=\frac{3}{4}(1-x)^{-5 / 2}$ .
2. Use mathematical induction to prove that

$f^{(n)}(x)=\left(\frac{1}{4}\right)^{n} \frac{(2 n)!}{n!}(1-x)^{-1 / 2-n} \quad n \in \mathbb{Z}, n \geq 2 $.

Let $g(x)=\cos (m x), m \in \mathbb{Q}$ .
Consider the function h defined by $ h(x)=f(x) \times g(x)$ for $x\lt 1$ .
The $x^{2}$ term in the Maclaurin series for h(x) has a coefficient of $-\frac{3}{4}$ .
3. Find the possible values of m .
参考答案:    

  • :
  • 总分:127分 及格:76.2分 时间:不限时
    未答题: 已答题:0 答错题:
    当前第 题,此次习题练习共有 127 道题
    本系统支持习题练习,作业与考试三大模式,作业考试自动评分,成绩排序一键导出,可设定动态变量同一试卷千人千题
    如果您对本系统感兴趣,想加入我们或者想进行任何形式的合作,请加微信 skysky1258

    浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

    GMT+8, 2024-12-26 15:09 , Processed in 0.403624 second(s), 275 queries , Redis On.