题库网 (tiku.one)

 找回密码
 立即注册

 

      

上传图片附件

未使用图片

小贴士: 允许的图片文件格式为: gif, jpg, jpeg, png, webp,上传完成后会在上方生成预览,用鼠标连续双击缩略图,或拖动缩略图,该图片就被绑定至本题,显示在题目下方

本次作答已使用

小贴士: 此栏目显示的是当前作答使用的所有图片,绑定到某一题目的图片同时会显示在该题目下方; 删除使用的图片会将其转移到<未使用图片>类别


习题练习:Integral Calculus



 作者: admin发布日期: 2024-08-03 16:43   总分: 79分  得分: _____________

答题人: 匿名未登录  开始时间: 24年08月03日 16:43  切换到: 整卷模式

标记此题
1#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { Let } f(x)=3 x^{2}-4 x \text {. The graph of } f \text { is shown in the following diagram. }$



1. Find $\int\left(3 x^{2}-4 x\right) \mathrm{d} x $.  (代数式) 
2. Find the area of the region enclosed by the graph of f , the x -axis and the lines x=2 and x=4 .   

参考答案:     查看本题详细解析

标记此题
2#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { Let } f^{\prime}(x)=3 x^{2}-3 \text {. Given that } f(2)=1 \text {, find } f(x) \text {. }$  (代数式) 

参考答案:     查看本题详细解析

标记此题
3#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { Let } f^{\prime}(x)=6 x^{2}+2 x-1 \text {. Given that } f(2)=5 \text {, find } f(x) \text {. }$  (代数式) 

参考答案:     查看本题详细解析

标记此题
4#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { Let } f(x)=-x^{2}+2 x+3 \text {. The graph of } f \text { is shown in the following diagram. }$



1. Find $\int\left(-x^{2}+2 x+3\right) \mathrm{d} x$  (代数式)  .
2. Find the area of the shaded region.   

参考答案:     查看本题详细解析

标记此题
5#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Consider a function f(x) su*3zfbc;x h . .kds8wwuch that $\int_{1}^{5} f(x) \mathrm{d} x=6$ .
1. Find $\int_{1_{5}}^{5} 2 f(x) \mathrm{d} x$ .   
2. Find $\int_{1}^{5}(f(x)+3) \mathrm{d} x$.   

参考答案:     查看本题详细解析

标记此题
6#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
A particle moves along a straight line such that i9 dei98ukhicysfr4cshdxk 8t6+4oiq q90g5- ts velocity, v, $\mathrm{~ms}^{-1}$ , is given by v(t)=5 t $e^{-1.2 t}$ , for t $\geq 0$ .
1. On the grid below, sketch the graph of v , for $0 \leq t \leq 3$ .


2. Find the distance travelled by the particle in the first 3 seconds.
3. Find the maximum velocity of the particle in the first 3 seconds.
参考答案:    

标记此题
7#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The graph of f passes through the rx, fou 2yf;y-point $ \left(\frac{\pi}{12}, 2\right) $ Given that $f^{\prime}(x)=2 \cos (2 x)$, find f(x) .  (代数式) 

参考答案:     查看本题详细解析

标记此题
8#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let $ f(x)=\int \frac{8}{2 x-1} \mathrm{~d}$ x , for $x>\frac{1}{2}$. The graph of f passes through (1,5) . Find f(x) .  (代数式) 

参考答案:     查看本题详细解析

标记此题
9#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The graph of a function f passes through the point -bsrk p 80(s .xwvs* hv*syd3u$(\ln 2,15)$ . Given that $ f^{\prime}(x)=9 e^{3 x}$ , find f(x) .  (代数式) 

参考答案:     查看本题详细解析

标记此题
10#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
$\text { Let } f(x)=e^{x} \sin (\pi x)+4 \text {, for } 0 \leq x \leq 2 \text {. The graph of } f \text { is given below. }$



There is an x -intercept at the point P , a local maximum point at A , where x=a , and a local minimum point at B , where x=b .
1. Write down the x -coordinate of P .
2. Find the value of a and the value of b .
3. Find $ \int_{a}^{b} f(x) \mathrm{d} x$ . Explain why this is not the area of the shaded region.
参考答案:    

标记此题
11#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { Let } f(x)=\frac{\ln (x+2)}{2} \text {, for } x>-2 \text {. The diagram below shows part of the graph of } f \text {. }$



1. Find the coordinates of:
a. the x -intercept; x =   
b. the y -intercept. y =   
2. Find the equation of the vertical asymptote to the graph of f .x =   
3 . Find the area of the region enclosed by the graph of f , the x -axis and the y -axis.   

参考答案:     查看本题详细解析

标记此题
12#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Consider a function ,pc6o6)uda x tg(x) such that $\int_{3} g(x) \mathrm{d} x=8 $.
1. Find $\int_{3}^{7} 5 g(x) \mathrm{d} x$ .   
2. Find $\int_{4}^{8}(g(x-1)+2) \mathrm{d} x$ .   

参考答案:     查看本题详细解析

标记此题
13#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let $f(x)=\frac{20 x}{\sqrt{\left(5 x^{2}+4\right)^{3}}} $, for $x \in \mathbb{R}$ .
1. Find $\int f(x) \mathrm{d} x$ .  (代数式) 
2. Find $\int_{0}^{3} f(x) \mathrm{d} x$ .   

参考答案:     查看本题详细解析

标记此题
14#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { Given that } \int_{0}^{e^{k}} \frac{2}{1+2 x} \mathrm{~d} x=\ln 3 \text {, find the value of } k \text {. }$   

参考答案:     查看本题详细解析

标记此题
15#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { Given that } \int_{0}^{6} \frac{3}{3 x+2} \mathrm{~d} x=\ln k \text {, find the value of } k \text {. }$   

参考答案:     查看本题详细解析

标记此题
16#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  1. Find $\int \frac{e^{3 x}}{1+e^{3 x}} \mathrm{~d}$ x .  (代数式) 
2. Find $\int \sin 5 x \cos 5 x \mathrm{~d}$ x  (代数式) 

参考答案:     查看本题详细解析

标记此题
17#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The acceleration, $a \mathrm{~m} \mathrm{~s}^{-2}$ , of a particle at time t seconds is given by

$a=\frac{3}{t}+5 \cos 2 t \text {, for } t \geq 1 \text {. }$


The particle is at rest when t=1 .
Find the velocity of the particle when t=4 .   

参考答案:     查看本题详细解析

标记此题
18#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A function f(x) haspydc ulnsdqj 6 h8pm1 ;9,d8)o derivative $f^{\prime}(x)=6 x^{2}-24 x$ . The graph of f has an x -intercept at x=1 .
1. Find f(x)  (代数式) 
2. The graph of f has a point of inflexion at x=k . Find k .   
3. Find the values of x for which the graph of f is concave-up. x $\lt$   

参考答案:     查看本题详细解析

标记此题
19#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  1. Find $\int 6 x^{2} e^{x^{3}+8} \mathrm{~d} x $.  (代数式) 
2. Find f(x) , given that $f^{\prime}(x)=6 x^{2} e^{x^{3}+8}$ and f(-2)=5 .  (代数式) 

参考答案:     查看本题详细解析

标记此题
20#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  1. Find $\int 4 x e^{x^{2}-9} \mathrm{~d} x $.  (代数式) 
2. Find f(x) , given that $f^{\prime}(x)=4 x e^{x^{2}-9}$ and f(3)=7 .  (代数式) 

参考答案:     查看本题详细解析

标记此题
21#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let $f(x)=\frac{\ln x}{x}$
1. Find $\int f(x) \mathrm{d} x$ .  (代数式) 
2. Find $\int_{1}^{e} f(x) \mathrm{d}$ x .   

参考答案:     查看本题详细解析

标记此题
22#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let f(x)=9-2 $\ln \left(x^{2}+4\right)$ , for $x \in \mathbb{R}$ . The graph of f passes through the point (p, 3) , where p>0 .
1. Find the value of p .   

The following diagram shows part of the graph of f .

The region enclosed by the graph of f , the x -axis and the lines x=-p and x=p is rotated $360^{\circ}$ about the x -axis.
2. Find the volume of the solid formed.   

参考答案:     查看本题详细解析

标记此题
23#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { Let } f^{\prime}(x)=\sin (2 x) \cos (2 x) \text {. Find } f(x) \text {, given that } f(\pi)=3 \text {. }$  (代数式) 

参考答案:     查看本题详细解析

标记此题
24#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let $f(x)=2 x e^{x}$ and g(x)=-2 f(x)-1 .
The graphs of f and g intersect at x=a and x=b , where a1. Find the value of a and of b . a =    b =   
2. Hence, find the area of the region enclosed by the graphs of f and g .   

参考答案:     查看本题详细解析

标记此题
25#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { The following diagram shows the graph of } f(x)=\frac{4 x}{x^{2}+1} \text {, for } 0 \leq x \leq 6 \text {, and the line } x=6 \text {. }$


Let R be the region enclosed by the graph of f , the x -axis and the line x=6 . Find the area of R .   

参考答案:     查看本题详细解析

标记此题
26#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
$\text { A particle } P \text { starts from a point } O \text { and moves along a horizontal straight line. Its velocity } v \mathrm{~ms}^{-1} \text { after } t \text { seconds is given by }$


$\text { The following diagram shows the graph of } v$


1. Find the initial velocity of particle P .
2. Find the acceleration of the particle in the first second.
3. How many times does the particle change direction in the first 8 seconds. Explain your answer.
4. Find the total distance travelled by the particle in the first 8 seconds.
参考答案:    

标记此题
27#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { Let } f^{\prime}(x)=\frac{x}{\sqrt{x^{2}+1}} \text {. Given that } f(0)=7 \text {, find } f(x) \text {. }$  (代数式) 

参考答案:     查看本题详细解析

标记此题
28#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { Let } f^{\prime}(x)=\frac{12 x}{\left(x^{2}-1\right)^{4}} \text {. Given that } f(0)=3 \text {, find } f(x)$  (代数式) 

参考答案:     查看本题详细解析

标记此题
29#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A particle moves in a strai jj4 e9+ ,xw0d 3r+/soipfplyj91fnynght line and its velocity, $ v \mathrm{~ms}^{-1}$ , at time t seconds, is given by $ v(t)=\left(t^{2}-2\right)^{2} $, for $ 0 \leq t \leq 2$ .
1. Find the initial velocity of the particle.   
2. Find the value of t for which the particle is at rest.   
3. Find the total distance travelled by the particle in the first 2 seconds.   
4. Show that the acceleration of the particle is given by $a(t)=4 t^{3}-8 t $.  (代数式) 
5. Find the values of t for which the velocity is positive and the acceleration is negative. a $\lt$t$lt$ b a =    b =   

参考答案:     查看本题详细解析

标记此题
30#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { Show that } \int_{1}^{3} x^{2} \ln x \mathrm{~d} x=9 \ln 3-\frac{26}{9} \text {. }$   

参考答案:     查看本题详细解析

标记此题
31#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let f(x)=$\frac{1}{\sqrt{3 x-6}}$ , for x>2 .
1. Find $\int(f(x))^{2} \mathrm{~d} x$ .  (代数式) 

Part of the graph of f is shown in the following diagram.

The shaded region R is enclosed by the graph of f , the x -axis, and the lines x=3 and x=11 .
2. Find the exact volume of the solid formed when R is rotated $ 360^{\circ} $ about the x -axis.   

参考答案:     查看本题详细解析

标记此题
32#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
A cannonball is fired from the top of a t3vmbhnft( 5l/ 5l gb1qjj)tz6ower. The rate of change of the height, h , of the cannb)bvqttf5 mnh 5l(z1jg 3/6 ljonball above the ground is modelled by

$h^{\prime}(t)=-4 t+20, \quad t \geq 0$,

where h is in metres and t is the time, in seconds, since the moment the cannonball was fired.
1. Determine the time t at which the cannonball reached its maximum height. __

After one second, the cannonball is 26 metres above the ground.
2. a. Find an expression for h(t) , the height of the cannonball above the ground at time t . __
b. Hence, determine the maximum height reached by the cannonball. __
3. Write down the height of the tower.
4. Calculate the height of the cannonball 4 seconds after it was fired. __

The cannonball hits its target on the ground n seconds after it was fired.
5. Find the value of n . __
6. Determine the total time the cannonball was above the height of the tower. __

A second cannonball is fired from exactly halfway up the tower, with the same projectile motion as the first cannonball.
7. Given that both cannonballs land at the same time, determine the length of time between the first cannonball and the second cannonball being fired. __
参考答案:    

标记此题
33#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
$\text { Let } f(x)=x^{2}-3 x+2 \text {, for } x \in \mathbb{R} \text {. The following diagram shows part of the graph of } f \text {. }$



The graph of f crosses the x -axis at the point $\mathrm{P}(1,0)$ and at the point $\mathrm{Q}(2,0)$ .
1. Show that $ f^{\prime}(1)=-1$ .
The line L is the normal to the graph of f at P .
2. Find the equation of L in the form y=m x+c .

The line L intersects the graph of f at another point R , as shown in the following diagram.



3 . Find the x -coordinate of R .
4. Find the area of the region enclosed by the graph of f and the line L .
参考答案:    

标记此题
34#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The values of the functions f and g and their derivatives for x=2,x=3 aojtk(w bac5 tzb)5(z 1-z mz+ond x=6 are shown in the following )5zkz5amzbwt+j1(tc - boo( z table.


1. Evaluate $\int_{2}^{3} g^{\prime \prime}(x) \mathrm{d} x$ .   
2. Let $ k(x)=\frac{f(x)}{g(x)}$ . Find $k^{\prime}(2)$   
3. Let h(x)=f(g(x)) . Find the equation of the tangent to h at x=6 .  (代数式) 

参考答案:     查看本题详细解析

标记此题
35#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
A particle P moves along a straight line so that its velociw/jq(if 3)likpup d oypocso8m -.q9 :6t 56gyty, $v \mathrm{~ms}^{-1}$ , after t seconds, is given by $v=\sin 3 t-2 \cos t-2 $, for $0 \leq t \leq 6$ . The initial displacement of P from a fixed point O is 5 metres.
1. Find the displacement of P from O after 6 seconds.

The following sketch shows the graph of v .

2. Find when the particle is first at rest.
3. Write down the number of times the particle changes direction.
4. Find the acceleration of P after 2 seconds.
5. Find the maximum speed of P .
参考答案:    

标记此题
36#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A function f is defu xs)j a kgbzqqaf0mcv)77;o2xg o )4.ined by $f(x)=\frac{3 x+2}{4 x+1}$,$ x \in \mathbb{R}$, $x \neq-\frac{1}{4} $
1. Find an expression for $f^{-1}(x)$ .  (代数式) 
2. Given that f(x) can be written in the form $f(x)=A+\frac{B}{4 x+1}$ , find the values of the constants A and B . A =    B =   
3. Hence write down $\int \frac{3 x+2}{4 x+1} \mathrm{~d} x$ .  (代数式) 

参考答案:     查看本题详细解析

标记此题
37#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { Using the substitution } u=\sqrt{x}-1 \text {, find the value of } \int_{1}^{4} \frac{2 \sqrt{\sqrt{x}-1}}{\sqrt{x}} \mathrm{~d} x$   

参考答案:     查看本题详细解析

标记此题
38#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { Let } g(x)=\frac{8-2 x}{\sqrt{9+8 x-x^{2}}} \text {. The following diagram shows part of the graph of } g \text {. }$


$\text { The region } R \text { is enclosed by the graph of } g \text {, the } x \text {-axis, and the } y \text {-axis. Find the area of } R \text {. }$   

参考答案:     查看本题详细解析

标记此题
39#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  John drops a stone from the top of a f *5 cgudd g2 4xjl6*zwix0k2ncliff which is h metres above sea level. The stone strikes the water surface after 9 seconds. The velocit* cgfj g u 2ndzlxd0kw46i*x25y of the falling stone, $v \mathrm{~m} \mathrm{~s}^{-1}$, t seconds after John releases it, can be modelled by the function



1. Find the velocity of the stone when t=12 , giving your answer to the nearest $ \mathrm{m} \mathrm{s}^{-1}$ . ≈   
2. Calculate the value of h , giving your answer to the nearest metre.≈   

The velocity of the stone when it reaches the bottom of sea is 10 $\mathrm{~m} \mathrm{~s}^{-1}$ .
3. Determine the depth of sea near the cliff, giving your answer to the nearest metre.≈   

参考答案:     查看本题详细解析

标记此题
40#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
1. Show that $\cos \theta=\sin \left(\frac{\pi}{2}-\theta\right)$ for $0\lt \theta \lt \frac{\pi}{2}$ .
2. Find $\int_{\sin \theta}^{\cos \theta} \frac{1}{\sqrt{1-x^{2}}} \mathrm{~d} x $ where $0 \lt \theta \lt \frac{\pi}{2}$ .
参考答案:    

标记此题
41#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The graph of y=f(x) is obtained from the grap0ss1z pcl1jh :qn5r:tuvxf0a+c)b ;dh of $y=\ln x $ by a horizontal translation 3 units in the negative x direction and a vertical translation $\ln 6$ units in the positive y direction
1. Find f(x) .  (代数式) 
2. The region bounded by the graph of y=f(x) and the two axes is rotated through $2 \pi$ radians about the y -axis. Find the volume generated.   

参考答案:     查看本题详细解析

标记此题
42#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { Let } f(x)=x(x-3)^{2} \text {, for } 0 \leq x \leq 4 \text {. The following graph shows } f \text {. }$





Let R be the region enclosed by the x -axis and the curve of f .
1. Find the area of R .   
2. Find the volume of the solid formed when R is rotated $360^{\circ}$ about the x -axis.   
3. The diagram below shows part of the graph of the quadric function g(x)=x(a-x) . The graph of g crosses the x -axis when x=a .   



The area enclosed by the graph of g is equal to the area of R . Find the value of a .

参考答案:     查看本题详细解析

标记此题
43#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Note: In this question, distance is in metres and time is in secono97r cx:qaf g,byz .sd9on7 u(ds.
A particle P moves in a straight line for six seconds. Its acceleration during this period is given by $a(t)=-2 t^{2}+13 t-15$ , for $0 \leq t \leq 6$ .
1. Write down the values of t when the particle's acceleration is zero.      
2. Hence or otherwise, find all possible values of t for which the velocity of P is increasing.$a \lt t \lt b $ a =    b =   

The particle has an initial velocity of $7 \mathrm{~ms}^{-1}$ .
3. Find an expression for the velocity of P at time t .  (代数式) 
4. Find the total distance travelled by P when its velocity is decreasing.   

参考答案:     查看本题详细解析

标记此题
44#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { A particle moves in a straight line such that its velocity, } v \mathrm{~m} \mathrm{~s}^{-1} \text {, at time } t \text { seconds, is given by }$



1. Find the value of t , for t>0 , when the particle is instantaneously at rest.   

The particle returns to its initial position at t=T .
2. Find the value of T . Give your answer correct to three significant figures. ≈   

参考答案:     查看本题详细解析

标记此题
45#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A function f satisfies the conditions f(0)=ln 2, f(1)=0 and its sej) fyrw4* kc*pcond derivarjkfp c4*w y)*tive is $f^{\prime \prime}(x)=40 x^{\frac{2}{3}}+(x+1)^{-2}$,$ x \geq 0$ . Find f(x) .  (代数式) 

参考答案:     查看本题详细解析

标记此题
46#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Consider the function f(x) defined by f(x)p2*e45ygpg-yv od- r015etrrdi*e te m ,ajv(=12-12 sin x , for $0 \leq x \leq 3 \pi$ . The following diagram shows the graph of y=f(x) .



The graph of f touches the x -axis at points A and B , as shown. The shaded region is enclosed by the graph of y=f(x) and the x -axis, between the points A and B .
1. Find the x -coordinate of A and B .
2. Show that the area of the shaded region is 24 $\pi$ .

The following right cone has a total surface area of 24 $\pi$ , equal to the shaded area in the previous diagram.



The cone has a base radius of 3 , height h , and slant height l .
3 . Find the value of l .
4. Hence, find the volume of the cone.
参考答案:    

标记此题
47#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
A particle P moves along a straight line so that its velocity, v, d tj0 fsdhuly9: .*(zm$\mathrm{~ms}^{-1}$ , after t seconds, is given by v=2 $\sin t-\cos 5 t+0.1$ , for $ 0 \leq t \leq 4 $. The initial displacement of P from a fixed point O is 2 metres.



1. Find the displacement of P from O after 4 seconds.
2. Find the second time for t , when the particle is at rest.
3. Write down the number of times P changes direction.
4. Write down the number of times P is neither accelerating or decelerating.
5. Find the maximum distance of P from O during the time $0 \leq t \leq 4$ and justify your answer.
参考答案:    

标记此题
48#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { Using integration by parts find } \int x^{2} \cos x \mathrm{~d} x \text {. }$  (代数式) 

参考答案:     查看本题详细解析

标记此题
49#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { Using integration by parts, find } \int x^{2} \sin x \mathrm{~d} x \text {. }$  (代数式) 

参考答案:     查看本题详细解析

标记此题
50#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
$\text { Consider a function with domain } a



From the graph above p, 0 and s are x -intercepts of $f^{\prime}$ , and there is a local minimum at x=q and a local maximum at x=r .
1. Find all the values of x where the graph of f is increasing. Justify your answer.
2. Find the value of x where the graph of f has a local minimum. Justify your answer.
3 . Find the value of x where the graph of f has a local maximum. Justify your answer.
4. Find the values of x where the graph of f has points of inflexion. Justify your answer.

The total area of the region enclosed by the graph of $ f^{\prime}$ and the x -axis between x=p and x=s is 25 .
5. Given that f(p)+f(s)=13 , find the value of f(0) .
参考答案:    

标记此题
51#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Let f(x)=ln x and e1dzfj xn,ti4x8gn+6 $g(x)=2+3 \ln (x-1)$ , for x>1 .
The graph of g can be obtained from the graph of f by two transforms:
a vertical stretch of scale factor q
a translation of $\binom{h}{k}$
1. Write down the value of
1. q ;   
2. h ;   
3. k .   

Let $h(x)=g(x) \cdot \cos (0.1 x) $, for 1\lt x \lt8 . The following diagram shows the graph of h and the line y=x .

2. a. Find $\int_{2.02}^{5.57}(h(x)-x) \mathrm{d} x$ .   
b. Hence, find the area of the region enclosed by the graphs of h and $h^{-1}$ .   
3. Let d be the vertical distance from a point on the graph of h to the line y=x . There is a point Q(x, y) on the graph of h where d is a maximum. Find the coordinates of Q , where $2.02\lt x \lt 5.57$ . x =    y =   

参考答案:     查看本题详细解析

标记此题
52#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following table shows 8*0kpdd hdo4324nzrj 3b unwz the probability distribution of a discrete random variable Z, in terms 0dz3wknb8j*d h4 uo24z p 3drnof an angle θ.


1. Show that $\cos \theta=\frac{3}{4}$.   
2. Find $\tan \theta $, given that $\tan \theta>0$ .   

Let $f(x)=\frac{1}{\cos x}$ , for $0\lt x\lt \frac{\pi}{2}$ .
The graph of y=f(x) between $x=\theta$ and $x=\frac{\pi}{4}$ is rotated $360^{\circ}$ about the x -axis.
3. Find the volume of the solid formed.v   

参考答案:     查看本题详细解析

标记此题
53#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Consider the ellipse defined by the 7.sbpxd, yd 5z5b6kn mequation $x^{2}+3 y^{2}=12$ .
1. Find the equation of the normal to the ellipse at the point P(3,1) . y =  (代数式) 
2. Find the volume of the solid formed when the region bounded by the ellipse, the x -axis for $x \geq 0$ and the y -axis for $y \geq 0$ is rotated through $2 \pi$ about the y -axis.   

参考答案:     查看本题详细解析

标记此题
54#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Consider the ellipse defined by the eyjrn4w m79aui)gt8 (kquation $x^{2}+3 y^{2}=12$ .
1. Find the equation of the normal to the ellipse at the point P(3,1) . y =  (代数式) 
2. Find the volume of the solid formed when the region bounded by the ellipse, the x -axis for $x \geq 0$ and the y -axis for $y \geq 0$ is rotated through $2 \pi$ about the y -axis.   

参考答案:     查看本题详细解析

标记此题
55#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
1. Show that 3 $\log _{a^{3}} x=\log _{a}$ x where a, x $\in \mathbb{R}^{+} $.

It is given that $ \log _{2} y+\log _{8} 4 x^{2}+\log _{8} 2 x=0$ .
2. Express y in terms of x . Give your answer in the form $y=b x^{c}$ where b, c are constants.

The region R , is bounded by the graph of the function found in part (b), the x -axis, and the lines x=1 and x=k where k>1 . The area of R is $\frac{3}{2} $.
3. Find the value of k .
参考答案:    

标记此题
56#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Consider the function f i.c/oj+ky- ohd gj0il5l 1a r+defined by $ f(x)=2 \ln (24-1.5 x) $ for x<16 .
The line $L_{1}$: y=x intersects the graph of f at point P .
The line $ L_{2}$ is perpendicular to $ L_{1}$ and tangent to the graph of f at point Q .

1. Find the x -coordinate of point P , to three significant figures. ≈   
2. a. Find the exact coordinates of point Q . x =    y =   
b. Show that the equation of $L_{2} $ is $ y=-x+2 \ln 3+14$ . y =  (代数式) 

The shaded region A , as shown in the previous diagram, is enclosed by the graph of f , the line $L_{1}$ and the line $ L_{2}$
3.a. Find the exact x -coordinate of the point where $ L_{2}$ intersects $ L_{1}$ .   
b. Hence, find the area of A , to two decimal places.≈   

The line $L_{2}$ is also tangent to the graph of the inverse function $f^{-1}$ .

$\text { 4. Find the shaded area enclosed by the graphs of } f, f^{-1} \text { and the line } L_{2} \text {. }$   

参考答案:     查看本题详细解析

标记此题
57#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $f(x)=2 e^{\frac{t}{5}}$ and g(x)=m x , where $m \geq 0 $, and $-6 \leq x \leq 6$ . Let R be the region enclosed by the y -axis, the graph of f , and the graph of g .
1. Let m=2 .
a. Sketch the graphs of f and g on the same axes.
b. Find the area of R .
2. Consider all values of m such that the graphs of f and g intersect. Find the value of m that gives the greatest value for the area of R .
参考答案:    

标记此题
58#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A continuous random variable)p7e)m(vpltug,uvd j8+8lu jkq 3h4 z X has a probability density function f given by


$\text { Find } \mathrm{P}(0 \leq X \leq 2) \text {. }$   

参考答案:     查看本题详细解析

标记此题
59#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
$\text { Find } \int \arccos x \mathrm{~d} x$ __
参考答案:    

标记此题
60#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
$\text { Using the substitution } u=e^{x}-4 \text {, find } \int \frac{e^{x}}{e^{2 x}-8 e^{x}+25} \mathrm{~d} x \text {. }$
参考答案:    

标记此题
61#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Consider the functionx1 /wsqx2, gaes f, g , defined for $x \in \mathbb{R}$ , given by $f(x)=e^{2 x} \sin x$ and $g(x)=e^{2 x} \cos x$ .
1. Find
a.f ′(x):  (代数式) 
b.g ′(x).  (代数式) 

$\text { 2. Hence, or otherwise, find } \int_{0}^{\pi} e^{2 x} \cos x \mathrm{~d} x \text {. }$   

参考答案:     查看本题详细解析

标记此题
62#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  All lengths in this question are qh )/4nfk 44g+;wcdyy asw+t- - 4bhwxk gz*pyin metres.
Consider the function $ f(x)=\sqrt{\frac{16-4 x^{2}}{7}}$ , for $-2 \leq x \leq 2 $. In the following diagram, the shaded region is enclosed by the graph of f and the x -axis.

A rainwater collection tank can be modelled by revolving this region by $360^{\circ}$ about the x -axis.
1. Find the volume of the tank.   

Rainwater in the tank is used for drinking, cooking, bathing and other needs during the week.
The volume of rainwater in the tank is given by the function g(t) , for $0 \leq t \leq 7$ , where t is measured in days and g(t) is measured in $\mathrm{m}^{3}$ . The rate of change of the volume of rainwater in the tank is given by $g^{\prime}(t)=1.5-4 \cos \left(0.12 t^{2}\right)$ .
2. The volume of rainwater in the tank is increasing only when $a\lt t \lt b$ .
a. Find the value of a and the value of b . a =    b =   
b. During the interval $a\lt t \lt b$ , the volume of rainwater in the tank increases by $d \mathrm{~m}^{3}$ . Find the value of d .   

When t=0 , the volume of rainwater in the tank is $8.2 \mathrm{~m}^{3}$ . It is known that the tank is never completely full of rainwater during the 7 day period.
3. Find the minimum volume of empty space in the tank during the 7 day period.   

参考答案:     查看本题详细解析

标记此题
63#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
$\text { The following diagram shows the curve } \frac{x^{2}}{400}+\frac{(y+5)^{2}}{225}=1 \text {, where } 0 \leq y \leq h \text {. }$



The curve from point C to point P is rotated $360^{\circ}$ about the y -axis to form a lamp shade. The rectangle ABCD , of height $(10-h) \mathrm{cm}$ , is rotated $360^{\circ}$ about the y -axis to form a solid ceiling fixture.
The lamp shade is assumed to have a negligible thickness. Given that the interior volume of the lamp shade is to be 6000 $\mathrm{~cm}^{3}$ , determine the height of the ceiling fixture, length A D in the diagram.
参考答案:    

标记此题
64#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
1. Using the substitutionr0b9)euix *i g $x=\cot \theta$ , show that $\int_{0}^{1} \frac{1}{\left(x^{2}+1\right)^{2}} \mathrm{~d} x=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sin ^{2} \theta \mathrm{d} \theta$ .
2. Hence find the value of $\int_{0}^{1} \frac{1}{\left(x^{2}+1\right)^{2}} \mathrm{~d} x$ .
参考答案:    

标记此题
65#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { Using the substitution } u=1-\sqrt{2 x} \text {, find } \int \frac{\sqrt{2 x}}{1-\sqrt{2 x}} \mathrm{~d} x \text {. }$  (代数式) 

参考答案:     查看本题详细解析

标记此题
66#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $ f(x)=\frac{\ln \left(8 x^{3}\right)}{k x}$ where x>0, $k \in \mathbb{R}^{+}$.
1. Show that $f^{\prime}(x)=\frac{3-\ln \left(8 x^{3}\right)}{k x^{2}}$ .

The graph of f has exactly one maximum point A .
2. Find the x -coordinate of A .

The second derivative of f is given by $ f^{\prime \prime}(x)=\frac{2 \ln \left(8 x^{3}\right)-9}{k x^{3}}$ . The graph of f has exactly one point of inflexion B .
3. Show that the x -coordinate of B is $ \frac{e^{3 / 2}}{2}$ .

The region R is enclosed by the graph of f , the x -axis, and the vertical lines through the maximum point A and the point of inflexion B .

$\text { 4. Given that the area of } R \text { is } 5 \text {, find the value of } k \text {. }$
参考答案:    

标记此题
67#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
$\text { Using the substitution } x^{3}=3 \sec \theta \text {, show that } \int \frac{\mathrm{d} x}{x \sqrt{x^{6}-9}}=\frac{1}{9} \arccos \left(\frac{3}{x^{3}}\right)+C \text {. }$
参考答案:    

标记此题
68#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { A particle moves in a straight line such that at time } t \text { seconds }(t \geq 0) \text {, its velocity is given by } v=18 t^{3} e^{-3 t^{2}} \text {. Find the exact distance travelled by the particle in the first two seconds. }$   

参考答案:     查看本题详细解析

标记此题
69#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
By using the substitutio w+g6svafxhos8je1f( +*r m;u n $s=\tan x$ , find $ \int \frac{\mathrm{d} x}{2+\cos 2 x}$ .
Express your answer in the form $A \arctan (B \tan x)+C $, where A, B are constants to be determined.
参考答案:    

标记此题
70#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Consider the function p so7pk-) kstd4 y4amdj9c+6n $f(x)=\sqrt{\frac{10}{x^{2}}-1}$ , where $1 \leq x \leq \sqrt{10} $.
1. Sketch the curve y=f(x) , indicating the coordinates of the endpoints.
2. 1. Show that $f^{-1}(x)=\sqrt{\frac{10}{x^{2}+1}}$.
2. State the domain and range of $ f^{-1}$ .

The curve y=f(x) is rotated through $2 \pi$ about the y -axis to form a solid of revolution that is used to model a vase.
3. 1. Show that the volume $ V \mathrm{~cm}^{3}$ , of liquid in the vase when it is filled to a height of h centimetres is given by $V=10 \pi \arctan (h)$ .
2. Hence, determine the volume of the vase.

At t=0 , the vase is filled to its maximum volume with water. Water is then removed from the vase at a constant rate of $4 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$ .
4. Find the time it takes to completely empty the vase.
5. Find the rate of change of the height of the water when half of the water has been emptied from the vase.
参考答案:    

标记此题
71#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Consider the functio ;j;e0l:3 v;c84 zuncaryfkbe ns f and g defined on the domain $0\lt x\lt 2 \pi$ by

$f(x)=4 \cos 2 x \text { and } g(x)=2-8 \cos x $.

The following diagram shows the graphs of y=f(x) and y=g(x) .

1. Find the x -coordinates of the points of intersection of the two graphs.
2. Find the exact area of the shaded region, giving your answer in the form $a \pi+b \sqrt{3}$ , where a, b $\in \mathbb{Q}$ .

At the points P and Q on the diagram, the gradients of the two graphs are equal.
3. Determine the y -coordinate of P on the graph of g .
参考答案:    

标记此题
72#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Consider the function/j7dr :8h*(8v wl k0g*enr eujdieaa*s $f(x)=\sin x,-\frac{\pi}{2} \leq x \leq \frac{\pi}{2} $ and $ g(x)=\frac{2 x \sqrt{1-x^{2}}}{1-2 x^{2}}$, $x \in \mathbb{R}$, $x \neq \pm \frac{1}{\sqrt{2}}$
1. Find an expression for $(g \circ f)(x) $, stating its domain.
2. Hence show that $(g \circ f)(x)=\tan 2 x$ .
3. Letting $y=(g \circ f)(x)$ , find an exact value for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at x=\frac{\pi}{3}$ .
4. Show that the area bounded by the graph of $ y=(g \circ f)(x)$ , the x -axis and the lines x=0 and $x=\frac{\pi}{3}$ is $\frac{1}{2} \ln 2 $.
参考答案:    

标记此题
73#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Consider the functioyp7-19w3de(uauq zybtzi f 5q e/ 8gn1n $f(x)=\frac{\sqrt{x}}{2 \cos x}$, $\frac{\pi}{2}\lt x\lt \frac{3 \pi}{2}$ .
1. 1. Show that the x -coordinate of the maximum point on the curve y=f(x) satisfies the equation $1+2 x \tan x=0$ .
2. Determine the values of x for which f(x) is an increasing function.
2. Sketch the graph of y=f(x) , showing clearly the maximum point and any asymptotic behaviour.
3. Find the coordinates of the point on the curve y=f(x) where the normal to the curve is perpendicular to the line y=x . Give your answers correct to two decimal places.

Consider the region bounded by the curve y=f(x) , the x -axis and the lines

$x=\frac{3 \pi}{4}, x=\frac{4 \pi}{3} \text {. }$

4. The region is now rotated through $ 2 \pi $ radians about the x -axis. Find the volume of revolution, giving your answer correct to two decimal places.
参考答案:    

标记此题
74#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Consider the function def x8kcpc5qbhth;;0t( x 4y u5osined by $f(x)=(1-x) \sqrt{2 x-x^{2}}$ where $0 \leq x \leq 2$ .
1. Show that f(1-x)=-f(1+x) , for $-1 \leq x \leq 1$ .
2. Find $ f^{\prime}(x)$ .
3. Hence find the x -coordinates of any local minimum or maximum points.
4. Find the range of f .
5. Sketch the graph of y=f(x) , indicating clearly the coordinates of the x -intercepts and any local maximum or minimum points.
6. Find the area of the region enclosed by the graph of y=f(x) on the x -axis, for $0 \leq x \leq 1 $.
7. Show that $\int_{0}^{2}|f(x)| d x>\left|\int_{0}^{2} f(x) d x\right|$ .
参考答案:    

标记此题
75#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
$\text { The following graph shows the relation } x=5 \sin \left(\frac{\pi y}{30}\right)+10,0 \leq y \leq 60 \text {. }$



The curve is rotated $360^{\circ}$ about the y -axis to form a volume of revolution.
1. Calculate the value of the volume generated.

A vase with this shape is made with a solid base of diameter 20 cm . The vase is filled with water from a faucet at a constant rate of 150 $\mathrm{~cm}^{3} \mathrm{sec}^{-1}$ . At time $t \mathrm{sec}$ , the water depth is h $\mathrm{cm}, 0 \leq h \leq 60 $ and the volume of water in the vase is V $\mathrm{~cm}^{3} $.
2. a. Given that $ \frac{\mathrm{d} V}{\mathrm{~d} h}=\pi\left[5 \sin \left(\frac{\pi h}{30}\right)+10\right]^{2}$ , find an expression for $\frac{\mathrm{d} h}{\mathrm{~d} t}$.
b. Find the value of $ \frac{\mathrm{d} h}{\mathrm{~d} t}$ when h=45 \mathrm{~cm} .
3. a. Find $\frac{\mathrm{d}^{2} h}{\mathrm{~d} t^{2}}$ .
b. Find the values of h for which $ \frac{\mathrm{d}^{2} h}{\mathrm{~d} t^{2}}=0$.
c. By making specific reference to the shape of the vase, interpret $\frac{\mathrm{d} h}{\mathrm{~d} t} $ at the values of h found in part (c) (ii).
参考答案:    

标记此题
76#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Consider the function (9giktc5hh)bz+t vyg o 1o 2+x$f(x)=\frac{a e^{-x}}{b-a e^{-x}}$ where $a\lt 0, b\lt 0$ .
1. Show that $f^{\prime}(x)=\frac{-a b e^{-x}}{\left(b-a e^{-x}\right)^{2}}$ .
2. Explain why $f^{\prime \prime}(x)$ is never zero.
3. Find the equation of:
a. the vertical asymptote of f ;
b. the horizontal asymptote of f .
4. Draw a sign diagram for $f^{\prime}(x)$ .
5. If a=3 and b=1 ,
a. sketch the graph of f labelling all asymptotes;
b. find the area of the region enclosed by f , the x and y axes and the line $x=\ln 2$ .
参考答案:    

标记此题
77#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
1. Use L'Hôpital's rule to find8cetm7adp x6 ) $\lim _{x \rightarrow \infty} x^{3} e^{-x} $.
2. Show that the proper integral $\int_{0}^{\infty} x^{3} e^{-x} \mathrm{~d} x$ converges, and state its value.
参考答案:    

标记此题
78#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let $ y=e^{-\frac{x}{2}} \cos \left(\frac{x}{2}\right) $
1. Find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x} $.
2. Show that $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{1}{2} e^{-\frac{x}{2}} \sin \left(\frac{x}{2}\right)$ .

Consider the function f defined by $f(x)=e^{-\frac{x}{2}} \cos \left(\frac{x}{2}\right),-\pi \leq x \leq \pi $.
3. Show that the function f has a local maximum value when $ x=-\frac{\pi}{2}$ .
4. Find the x -coordinate of the point of inflexion of the graph of y=f(x) .
5. Sketch the graph of y=f(x) , clearly indicating the positions of the local maximum point, the point of inflexion and the intercepts with the axes.
6. Find the area of the region enclosed by the graph of y=f(x) and the x -axis.

The curvature at any point (x, y) on a graph is defined as $ \kappa=\frac{\left|\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right|}{\left[1+\left[\frac{\mathrm{d} y}{\mathrm{~d} x}\right]^{2}\right]^{\frac{3}{2}}}$ .
7. Find the value of the curvature of the graph of y=f(x) at the local maximum point.
8 . Find the value of $\kappa$ for x=0 and comment on its meaning with respect to the shape of the graph.
参考答案:    

标记此题
79#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
$\text { The following diagram shows the graph of } y=x(\ln x)^{2}, x>0 \text {. }$



1. Given that the curve passes through the point (p, 0) , state the value of p .

The region R is enclosed by the curve ( $p \leq x \leq e $ ), the x -axis and the line x=e .
2. Integrate by parts twice to find the area of the region R .

Let $I_{n}=\int_{1}^{e} x^{2}(\ln x)^{n} \mathrm{~d} x, n \in \mathbb{N}$
3. a. Find the value of I_{0} .
b. Show that $I_{n}=\frac{1}{3}\left(e^{3}-n I_{n-1}\right)$.
c. Hence find the values of $ I_{1}$,$ I_{2}$ and $I_{3}$ .

The region R is rotated through $2 \pi$ radians about the x -axis.
4. Find the volume of the solid formed.
参考答案:    

  • :
  • 总分:79分 及格:47.4分 时间:不限时
    未答题: 已答题:0 答错题:
    当前第 题,此次习题练习共有 79 道题
    本系统支持习题练习,作业与考试三大模式,作业考试自动评分,成绩排序一键导出,可设定动态变量同一试卷千人千题
    如果您对本系统感兴趣,想加入我们或者想进行任何形式的合作,请加微信 skysky1258

    浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

    GMT+8, 2024-11-20 16:30 , Processed in 0.291359 second(s), 179 queries , Redis On.