题库网 (tiku.one)

 找回密码
 立即注册

 

      

上传图片附件

未使用图片

小贴士: 允许的图片文件格式为: gif, jpg, jpeg, png, webp,上传完成后会在上方生成预览,用鼠标连续双击缩略图,或拖动缩略图,该图片就被绑定至本题,显示在题目下方

本次作答已使用

小贴士: 此栏目显示的是当前作答使用的所有图片,绑定到某一题目的图片同时会显示在该题目下方; 删除使用的图片会将其转移到<未使用图片>类别


习题练习:Maclaurin Series



 作者: admin发布日期: 2024-08-03 00:58   总分: 9分  得分: _____________

答题人: 匿名未登录  开始时间: 24年08月03日 00:58  切换到: 整卷模式

标记此题
1#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let the Maclaurin seot1q)(l2a ; ym vl3jltin7qf. ries for cotx be

cotx=a1x+a2x+a3x3+

where a1,a2 and a3 are non zero constants.
1. Find the series for csc2x , in terms of a1,a2 and a3, up to and including the x2 term
a. by differentiating the above series for cotx ;
b. by using the relationship csc2x=1+cot2x .
2. Hence, by comparing your two series, determine the values of a1,a2 and a3 .
参考答案:    

标记此题
2#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The function f is defined by wz g*r z11 tdqj y1j7i3yij90y f(x)=exsinxx+x2 .
By finding a suitable number of derivatives of f , determine the first non-zero term in its Maclaurin series.
参考答案:    

标记此题
3#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The function f is defined sbl o46hkr)gvgj6 9lu2o) hi7 by f(x)=excosx,xR.
1. By finding a suitable number of derivatives of f , determine the Maclaurin series for f(x) as far as the term x4.
2. Hence, or otherwise, determine the exact value of limx0excosxx1x3.
参考答案:    

标记此题
4#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
1. By successive differentiation find the first five non-zero terms in the Maclky usvd 74a)zklc9a+)aurin series forsalu+v7 z4)kd y9c a)k f(x)=(22x)ln(1x)+2x .
2. Deduce that, for n2, the coefficient of x^{n} in this series is 2n(n1).
参考答案:    

标记此题
5#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let f(x)=excosx.
1. Show that f(x)=2(f(x)f(x)) .
2. By further differentiation of the result in part (a), find the Maclaurin expansion of f(x) , as far as the term in x5.
参考答案:    

标记此题
6#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The function f is defined b3e;hdf;8f,ydrp iy ;t y f(x)=(arccosx)2,1x1.
1. Show that f(0)=π

The function f satisfies the equation

(1x2)f(x)xf(x)=2 .

2. By differentiating the above equation twice, show that

(1x2)f(4)5xf(x)=4f(x)

where f^{(n)}(x) denotes the n th derivative of f(x) .
3. Hence show the Maclaurin series for f(x) up to and including the term in x4 is π24πx+x2π6x3+x43 .
4. Use this series approximation for f(x) with x=12 to find an approximate value for 25π203π2 .
参考答案:    

标记此题
7#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The function f is defined by aoc g15rihczd0ut s8* yhj5 )- f(x)=earctanx .
1. Find the first two derivatives of f(x) and hence find the Maclaurin series for f(x) up to and including the x2 term.
2. Show that the coefficient of x3 in the Maclaurin series for f(x) is 16 .
3. Using the Maclaurin series for sinx and ln(2x+1), find the Maclaurin series for sin(ln(2x+1)) up to and including the x3 term.
4. Hence, or otherwise, find limx0f(x)1sin(ln(2x+1)).
参考答案:    

标记此题
8#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Consider the functionmgk;0tqnw3-9pk yn72 nla 4i r7n,k;bgmf 8pm f(x)=cos(parccosx),1<x<1 andpR.
1. Show that f(0)=psin(pπ2).

The function f and its derivative satisfy

(1x2)f(n+2)(x)=(2n+1)xf(n+1)(x)+(n2p2)f(n)(x),nN

where f^{(n)}(x) denotes the n th derivative of f(x) and f(0)(x) is f(x) .
2. Show that f(n+2)(0)=(n2p2)f(n)(0) .
3. For pR{±1,±2,±3} , show that the Maclaurin series for f(x) , up to and including the x^{4} term, is

cos(pπ2)+psin(pπ2)xp2cos(pπ2)2x2+(1p2)psin(pπ2)6x3(4p2)p2cos(pπ2)24x4

4. Hence or otherwise, find limx0cos(parccos(x))x where p is an odd integer.
5. If p is an integer, prove the Maclaurin series for f(x) is a polynomial of .
参考答案:    

标记此题
9#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Let f(x)=11x, x<1 .
1. Show that f(x)=34(1x)5/2.
2. Use mathematical induction to prove that

f(n)(x)=(14)n(2n)!n!(1x)1/2nnZ,n2.

Let g(x)=cos(mx),mQ .
Consider the function h defined by h(x)=f(x)×g(x) for x<1 .
The x^{2} term in the Maclaurin series for h(x) has a coefficient of 34 .
3. Find the possible values of m .
参考答案:    

  • :
  • 总分:9分 及格:5.4分 时间:不限时
    未答题: 已答题:0 答错题:
    当前第 题,此次习题练习共有 9 道题
    本系统支持习题练习,作业与考试三大模式,作业考试自动评分,成绩排序一键导出,可设定动态变量同一试卷千人千题
    如果您对本系统感兴趣,想加入我们或者想进行任何形式的合作,请加微信 skysky1258

    浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

    GMT+8, 2025-4-13 22:50 , Processed in 0.095854 second(s), 39 queries , Redis On.