题库网 (tiku.one)

 找回密码
 立即注册

 

      

上传图片附件

未使用图片

小贴士: 允许的图片文件格式为: gif, jpg, jpeg, png, webp,上传完成后会在上方生成预览,用鼠标连续双击缩略图,或拖动缩略图,该图片就被绑定至本题,显示在题目下方

本次作答已使用

小贴士: 此栏目显示的是当前作答使用的所有图片,绑定到某一题目的图片同时会显示在该题目下方; 删除使用的图片会将其转移到<未使用图片>类别


习题练习:gc textbook chapter 8 Rotational Motion



 作者: admin   总分: 110分  得分: _____________

答题人: 匿名未登录  开始时间: 24年12月27日 14:40  切换到: 整卷模式

标记此题
1#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
A bicycle odometer (which measureie4 w0o-,.akt1 zgq8 hh:aro is distance traveled) is attached near the wheel hub and is designed for 27-in hrh .ikz twioe84 g:a-o,1a0qch wheels. What happens if you use it on a bicycle with 24-inch wheels?
参考答案:    

标记此题
2#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Suppose a disk rotatga-c-gih8 fag87(rbvcltg h,03 ka7ves at constant angular velocity. Does a point on the rim have radial and/or tangential acceleration? If the disk’s a,lgr0g7v-7g a 3i b88 gf kahvc-h(tcangular velocity increases uniformly, does the point have radial and/or tangential acceleration? For which cases would the magnitude of either component of linear acceleration change?
参考答案:    

标记此题
3#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Could a nonrigid body be described by a single.2zoepq9vtky9h t8sz6f 3zs8 value of the angular velocity $\omega$ Explain.
参考答案:    

标记此题
4#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Can a small force ever z4zbdp*57s 7ctvsuh,j ( dd9 1k9vhp oexert a greater torque than a larger force? Explain.
参考答案:    

标记此题
5#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
If a force $\vec{F}$ acts on an object such that its lever arm is zero, does it have any effect on the object’s motion? Explain.
参考答案:    

标记此题
6#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Why is it more difficult to dow (( *tky*nwia t*(ach a sit-up with your hands behind your head than when your arms are stretched out in front of you? A diagram may help you to a*w ihktat*y(*a wn((c nswer this.
参考答案:    

标记此题
7#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
A 21-speed bicycle has seven sprockets tm *aob(nw-y/ at the rear wheel and three at the pedal cranks. In which gear is it harder to pedal, a small rear sprocket or a large rear sprocket? Why? In which gear is it harder to pedal, a small front sprocket or a large front s*boy /awm(nt-procket? Why?
参考答案:    

标记此题
8#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Mammals that depend on being able to run fast have slender lower legs with flesh+by x9t :ckjx; and muscle concentrated high, close to the body (Fig. 8–34). On the basis of rotational dynamics, explain why this distribution of mass is ytbj9+ ;kxc:x advantageous.
参考答案:    

标记此题
9#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Why do tightrope walkers (Fig. 8–35) carry a i-az6dyeu6. r6ccl-m long, narrow beam?
参考答案:    

标记此题
10#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
If the net force on a system is zero, is tlug3h:h c1n0e 9jkij/ he net torque also zero? If the net tojin:kl19 jh0 cgue3h /rque on a system is zero, is the net force zero?
参考答案:    

标记此题
11#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Two inclines have the same height but make different ) zpvvlw wh65) 7x.o i9i.sqwwangles with the horizontal. The same steel z)ww9hvw .x7iw .qo l)s i6vp5ball is rolled down each incline. On which incline will the speed of the ball at the bottom be greater? Explain.
参考答案:    

标记此题
12#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Two solid spheres simultaneously start rolling (from rest) down an incline. q5d0yt nht ;3(yb9s:e4 5prtdjgeix 8One sphere has (8t:h53yt 0dg;nr4be9qe tp sdjy xi5 twice the radius and twice the mass of the other. Which reaches the bottom of the incline first? Which has the greater speed there? Which has the greater total kinetic energy at the bottom?
参考答案:    

标记此题
13#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
A sphere and a cyliny +kc,fxi.w1x5 s jnn2der have the same radius and the same mass. They start from r.nf 1c5wyj n,2 sixk+xest at the top of an incline. Which reaches the bottom first? Which has the greater speed at the bottom? Which has the greater total kinetic energy at the bottom? Which has the greater rotational KE?
参考答案:    

标记此题
14#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
We claim that momentum and angular momentum are conserved. Yet most bp 5dymqwnn,e3a 2m 8bv3t0; +w6jxap moving or rotating objects eventuallymba nqmp; aj 28+dn,t0vwebwp6 3x 35y slow down and stop. Explain.
参考答案:    

标记此题
15#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
If there were a great migration of peo/k7z; qo: ktd mfh*l:fple toward the Earth’s equator, how would this affect the lql:;h 7kkof: fd /tzm*ength of the day?
参考答案:    

标记此题
16#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Can the diver of Fig. 8–29 do a somersault without having any initial rotation mfacafsm*z.y sl +nr8nt5 vu777 cf *6when she leaves the board?77+* m8fcmauf5c 7narf6sslzv*y.t n
参考答案:    

标记此题
17#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The moment of inertia of a rotating soj0vqkma:(z7+ pp nuv, lid disk about an axis through its center of mass + ka0z7pvu:(j,nmp vq is $\frac{1}{2}WR^2$ (Fig. 8–21c). Suppose instead that the axis of rotation passes through a point on the edge of the disk. Will the moment of inertia be the same, larger, or smaller?
参考答案:    

标记此题
18#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Suppose you are sitting on a rotating stool holding a 2-kg mass0rgw,fxz4o 3k in each outstretched hand. If you suddenly drop thxgr0zw ,o4f k3e masses, will your angular velocity increase, decrease, or stay the same? Explain.
参考答案:    

标记此题
19#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Two spheres look identical and have the same maa:7uw 9thnt1j/v q( erss. However, one is hollow and the other is solid. Describe an experiment to determine/:97u1(rhte twqvn ja which is which.
参考答案:    

标记此题
20#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
In whatdirection is the Earth’s angular velocity vector as it rotates daily about itsaxis?
参考答案:    

标记此题
21#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The angular velocity o7bh qbid 183un.o8c kff a wheel rotating on a horizontal axle points west. In what direction is the linear velocity of a point on the top of the wheel? If the angular acceleration points east, de8f8bid3ocqun 7.b h1 kscribe the tangential linear acceleration of this point at the top of the wheel. Is the angular speed increasing or decreasing?
参考答案:    

标记此题
22#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Suppose you are standing on the f0 0vmwzd;db-edge of a large freely rotating turntable. What happens if you walk toward 0 bz-fmwd ;0dvthe center?
参考答案:    

标记此题
23#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
A shortstop may leap into the air to catch a ball anda 06yl ;qmt7yl throw it quickly. As he throws the ball, the upper part of his body rotates. If you look quickly you will notice that his hips and legs rotate in the opposite directy6lq 7aml0;y tion (Fig. 8–36). Explain.
参考答案:    

标记此题
24#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
On the basis of the law of conservation of an xrs,v 9dn9a9fl7ja)f gular momentum, discuss why a helicopter must have more than on v9a9 a)fsd9,7j lrfxne rotor (or propeller). Discuss one or more ways the second propeller can operate to keep the helicopter stable.
参考答案:    

标记此题
25#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Express the following angles in radians: (a) 30zzbe;wp,+wn-2y: heo $^{\circ} $, (b) 57 $^{\circ} $, (c) 90 $^{\circ} $, (d) 360 $^{\circ} $, and (e) 420 $^{\circ} $. Give as numerical values and as fractions of $\pi$.(Round to two decimal places)
(a)   $rad$ (b)   $rad$ (c)    $rad$ (d)    $rad$ (e)    $rad$

参考答案:     查看本题详细解析

标记此题
26#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Eclipses happen on Earth because of an amazi fl g4jm,fbe)ven4+wz-0 nqa5ng coincidence. Calculate, using the information inside the Front Cover, the angular diameters (in radians) of the Sun and the gn5eqe,0vjw n l)a4b4f-m +zf Moon, as seen on Earth.
Sun =    $rad$ Moon =    $rad$

参考答案:     查看本题详细解析

标记此题
27#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A laser beam is directed at the Moon, 380,000 km from Earth. The beam ep9z*-2 zmv 5d yv:)mj9jz6oqhzd+rvdiverges atj:9*z6d pod+zzzm vr-vj952y q e) hmv an angle $\theta$ (Fig. 8–37) of $1.4\times10^{-5}$ rad What diameter spot will it make on the Moon?    m



参考答案:     查看本题详细解析

标记此题
28#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The blades in a blender rotate at a rate of 6500 rpm. Wwxxojr+ 0 f5e++nf .nmhen the motor is turned off during operation, the blades slow to rest in 3.0 s. What is the angular acceleration as the blades mef+nnjf0r5wo + xx.+ slow down?    $rad/s^2$

参考答案:     查看本题详细解析

标记此题
29#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A child rolls a ball on a level floor 3.5 m to another child. If the ball mhu w/u16egp/kakes 15.0 revolutions, what ihg1/k /upu6wes its diameter?    m

参考答案:     查看本题详细解析

标记此题
30#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A bicycle with tires 68 cm in diameter travels 8.0 km. How many revolutions dv9v5s ,qlon duq.13cto the wheels .vvq31dco s9 nt5lqu,make?    $rev$

参考答案:     查看本题详细解析

标记此题
31#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  (a) A grinding wheel 0.35 m in diame hrxoad9s/20dcyu+, (82zvb 5 k komneter rotates at 2500 rpm. Calculate its angular vel( oy9h2b/u2cdo5k vzm,nke8xr+da s 0ocity in $rad/s$ $\omega$ =    $rad/sec$
(b) What are the linear speed and acceleration of a point on the edge of the grinding wheel? v =    $m/s$ $a_R$ =    $ m/s^2$

参考答案:     查看本题详细解析

标记此题
32#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A rotating merry-go-round makj5vuie 4 p,: qo*s j2moh*errtu1m+;mes one complete revolution in 4.0 s (Fig. 8–38). (a) What is the liuu*vo;pjrhsm4e jmm5,rq21i +t *o:enear speed of a child seated 1.2 m from the center?    $m/s$
(b) What is her acceleration (give components)?    $m/s^2$    the center

参考答案:     查看本题详细解析

标记此题
33#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Calculate the angular velocity o) fks4kby/a3+bc8n war-ly(6 ljxxy 1f the Earth (a) in its orbit around the Sun    $ \times10^{-7 }$ $rad/s$
(b) about its axis.    $ \times10^{-5}$ $rad/s$

参考答案:     查看本题详细解析

标记此题
34#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  What is the linear speed of a point -4tr(zgd w +b-r)j*u*s kxwzj
(a) on the equator,    $m/s$
(b) on the Arctic Circle (latitude 66.5$^{\circ} $ N),    $m/s$
(c) at a latitude of 45.0$^{\circ} $ N, due to the Earth’s rotation?    $m/s$

参考答案:     查看本题详细解析

标记此题
35#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  How fast (in rpm) must a centrifuge rotate if a particle 7.0 cm from7j e *kd.:d)fgm0p gpm the axis of rotation is to experience an acceleratp gdm: k7mpe)f.0jg* dion of 100,000 $g’s$?    $rpm$

参考答案:     查看本题详细解析

标记此题
36#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A 70-cm-diameter wheel accelerates uniformly about its center from 130 rpm to)e9wnlxn 6 77wy)ccj 5ps299qrav hco 280 rpm iv97ycr p nj7n569w2xs) a l)qh 9ewccon 4.0 s. Determine
(a) its angular acceleration,$\approx$    $rad/s^2$(Round to one decimal places)
(b) the radial and tangential components of the linear acceleration of a point on the edge of the wheel 2.0 s after it has started accelerating. $a_R$    $m/s^2$ $a_{tan}$    $m/s^2$

参考答案:     查看本题详细解析

标记此题
37#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
A turntable of radius a+6fs kum5fy .l el6r9$R_1$ is turned by a circular rubber roller of radius $R_2$ in contact with it at their outer edges. What is the ratio of their angular velocities, $\omega_1$ / $\omega_2$
参考答案:    

标记此题
38#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  In traveling to the Moon, astronauts aboard the Apollo spacecraft put themselv5ufcc z,+xk8wr; l5vves into a slow rotation to distribute the Sun’s energy evenly. At the start of their trip, they accelerated from no rotation to 1.0 rvzwv58f c5ckxu, l;r+evolution every minute during a 12-min time interval. The spacecraft can be thought of as a cylinder with a diameter of 8.5 m. Determine
(a) the angular acceleration, $\approx$    $rad/s^2$
(b) the radial and tangential components of the linear acceleration of a point on the skin of the ship 5.0 min after it started this acceleration. $a_{tan}$ =    $ \times10^{ -4}$ $m/s^2$ $a_{rad}$ =    $ \times10^{ -3}$ $m/s^2$

参考答案:     查看本题详细解析

标记此题
39#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A centrifuge accelerates uniformly from rest to yo* puvv*o.u +,b4lgayd 2nh)15,000 rpm in 220 s. Through how many revolutions did it turn in this d.o, vl4)+hbpuu ya*2g*o nv ytime?    $rev$

参考答案:     查看本题详细解析

标记此题
40#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  An automobile engine slows down fromb +v e3;deuhdf ,cv*a0 4500 rpm to 1200 rpm in 2.5 s. Calculate
(a) its angular acceleration, assumed constant,    $rad/s^2$
(b) the total number of revolutions the engine makes in this time.    $rev$

参考答案:     查看本题详细解析

标记此题
41#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Pilots can be tested for the stresses of flying highspe 7nc)lqw2:rfrfzn y,3ed jets in a whirling “human centrifuge,” which takes 1.0 min to turn through 20 qf3:r lr2 7ycfnnz ,w)complete revolutions before reaching its final speed.
(a) What was its angular acceleration (assumed constant),    $rev/min^2$
(b) what was its final angular speed in rpm?    $rpm$

参考答案:     查看本题详细解析

标记此题
42#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A wheel 33 cm in diameter accelerates uniforme-)cba(z3nnp y ai 5kl0wihl.)u. )t fly from 240 rpm to 360 rpm in 6.5 s. How far will a point on the edge of the wheel have traveled itzan3 0)y)- k)c ilnif h.w( b.ula5epn this time?    m

参考答案:     查看本题详细解析

标记此题
43#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A cooling fan is turned off when it is running at 850rev/min ypoen 3lp2*k -It turns 1500 revolutions before pk-y*o pe2nl3it comes to a stop.
(a) What was the fan’s angular acceleration, assumed constant?    $\frac{rad}{s^2}$
(b) How long did it take the fan to come to a complete stop?    s

参考答案:     查看本题详细解析

标记此题
44#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The tires of a car make 65 revolutions as ts- h:if-lx x3phe car reduces its speed uniformly from -hx -3 :lsxipf95km/h to 45km/h The tires have a diameter of 0.80 m.
(a) What was the angular acceleration of the tires? $\approx$    $rad/s^2$
(b) If the car continues to decelerate at this rate, how much more time is required for it to stop?    s

参考答案:     查看本题详细解析

标记此题
45#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The tires of a car make 65m fpqmb0dc :7(ktcwn;f y b0:; revolutions as the car reduces its speed uniformly from 95km/h to 45km/h The tires have a diameter of 0.80 m. (k0p :yq; mnf; :fb 0cm7ctdbw
(a) What was the angular acceleration of the tires? $\approx$    $rad/s^2$
(b) If the car continues to decelerate at this rate, how much more time is required for it to stop?    s

参考答案:     查看本题详细解析

标记此题
46#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A 55-kg person riding a bike q:78 jx evjh+aputs all her weight on each pedal when climbing a hill. The pedals avqhj 7j:x e+8rotate in a circle of radius 17 cm.
(a) What is the maximum torque she exerts?    $m \cdot N$
(b) How could she exert more torque?

参考答案:     查看本题详细解析

标记此题
47#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A person exerts a force of 55 N 5f;:svgvk irz.q9eg3 on the end of a door 74 cm wide. What is the magnitude of erv9.:i;gvqfkz 3s5 g the torque if the force is exerted
(a) perpendicular to the door    $m \cdot N$
(b) at a 45 $^{\circ} $ angle to the face of the door?    $m \cdot N$

参考答案:     查看本题详细解析

标记此题
48#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Calculate the net torque about the axa r32)k(51livg qo jxple of the wheel shown in Fig. 8–39. Assume that a friction togvrp3qio)(klx 5a2 1jrque of 0.4 $m \cdot N$ opposes the motion.    $m \cdot N$  



参考答案:     查看本题详细解析

标记此题
49#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Two blocks, each of mass m, are attached to the ends of a j jf3acqh3 76hpgju2k8 mc*f1massless rod which pivots as shown in Fig. 8–47cmjj 1gu8* k3 62fpfqh3jahc0. Initially the rod is held in the horizontal position and then released. Calculate the magnitude and direction of the net torque on this system.
参考答案:    

标记此题
50#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The bolts on the cylinder head omion+/ojuhw9x5(n 4 dm0top *f an engine require tightening to a torque of 38 9ti *w4+n nmhd5opuo j0(/omx$m \cdot N$ If a wrench is 28 cm long, what force perpendicular to the wrench must the mechanic exert at its end?    N
If the six-sided bolt head is 15 mm in diameter, estimate the force applied near each of the six points by a socket wrench (Fig. 8–41).    N


参考答案:     查看本题详细解析

标记此题
51#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Determine the moment of inertia of a 10.8-)qz7 p v+fyg i8bv7-takg sphere of radius 0.648 m when the axis of rotation is thro 7py +at)i7v8q gv-bzfugh its center.    $kg \cdot m^2$

参考答案:     查看本题详细解析

标记此题
52#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Calculate the moment of inertia of a bicyclmice2 h :e lg,jmydx75jv85/vk qz/c/e wheel 66.7 cm in diameter. The rim and tire /kv5v8j72 ,cxicm dj q5/e: mgylzh /ehave a combined mass of 1.25 kg. The mass of the hub can be ignored (why?).    $kg \cdot m^2$

参考答案:     查看本题详细解析

标记此题
53#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A small 650-gram ball on the end of a thin, light rod is rotated in a horizcbu2j nebkl j0;2b+* aontal circle of radius 1.2 m. b0e2*b + an;uklj2bcjCalculate
(a) the moment of inertia of the ball about the center of the circle,    $kg \cdot m^2$
(b) the torque needed to keep the ball rotating at constant angular velocity if air resistance exerts a force of 0.020 N on the ball. Ignore the rod’s moment of inertia and air resistance.    $m \cdot N$

参考答案:     查看本题详细解析

标记此题
54#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A potter is shaping a bowl on a potte qfs/d)1jkl q+r’s wheel rotating at constant angular speed (Fig dq)k1q fj/ls+. 8–42). The friction force between her hands and the clay is 1.5 N total.
(a) How large is her torque on the wheel, if the diameter of the bowl is 12 cm?    $m \cdot N$
(b) How long would it take for the potter’s wheel to stop if the only torque acting on it is due to the potter’s hand? The initial angular velocity of the wheel is 1.6 rev/s, and the moment of inertia of the wheel and the bowl is 0.11 $kg \cdot m^2$.    s

参考答案:     查看本题详细解析

标记此题
55#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Calculate the moment of inertia of the arraycde c s /mnvtor peuhzck p4+852 2l0kd1m;*c- of point objects shown in Fig. 8–43 abo cc0ku k d+h e2v4emco;dt8* 1csr5ppnm-/2zlut
(a) the vertical axis,    $kg \cdot m^2$
(b) the horizontal axis. Assume m=1.8 kg,M=3.1kg and the objects are wired together by very light, rigid pieces of wire. The array is rectangular and is split through the middle by the horizontal axis.    $kg \cdot m^2$
(c) About which axis would it be harder to accelerate this array?



参考答案:     查看本题详细解析

标记此题
56#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  An oxygen molecule consists of two oxygen atomsw-iq 6gj p-v fg:g1n,v whose total mass is $5.3 \times10^{ -26}$ kg and whose moment of inertia about an axis perpendicular to the line joining the two atoms, midway between them, is $ 1.9\times10^{-46 }$ $kg \cdot m^2$ From these data, estimate the effective distance between the atoms.    $\times10^{-10 }$ m

参考答案:     查看本题详细解析

标记此题
57#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  To get a flat, uniform cyliq (*,iwk ;nnvmndrical satellite spinning at the correct rate, engineers fire four tangential rockets as shown in Fig. 8–44. If the satellite has a mass of 3600 kg and a radius of 4.0 m, what is the required steady force of each rocket if the satellite is tov,m*kn(i w q;n reach 32 rpm in 5.0 min? $\approx$    N(round to the nearest integer)


参考答案:     查看本题详细解析

标记此题
58#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A grinding wheel is a uniform cylinder wit mavies04y 6;ih a radius of 8.50 cm and a mass of 0.e v0yima6 ;i4s580 kg. Calculate
(a) its moment of inertia about its center, $\approx$    $kg \cdot m^2$
(b) the applied torque needed to accelerate it from rest to 1500 rpm in 5.00 s if it is known to slow down from 1500 rpm to rest in 55.0 s。    $m \cdot N$

参考答案:     查看本题详细解析

标记此题
59#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A softball player swings a bat, acxj 2(o0w jath:celerating it from rest to 3 $rev/s$ in a time of 0.20 s. Approximate the bat as a 2.2-kg uniform rod of length 0.95 m, and compute the torque the player applies to one end of it.    $m \cdot N$

参考答案:     查看本题详细解析

标记此题
60#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A teenager pushes tangentially on a small hand-driven merry-e8k1mwt/ 6vo,4nyqhigo-round and is able to accelerate it from rest to a frequency of 15 rpm in 10.0 s. Assume the merry-go-round is a uniform disk of radius 2.5 m and has amyk o,nq 1wt/68h evi4 mass of 760 kg, and two children (each with a mass of 25 kg) sit opposite each other on the edge. Calculate the torque required to produce the acceleration, neglecting frictional torque. $\approx$   $m \cdot N$ What force is required at the edge?    N

参考答案:     查看本题详细解析

标记此题
61#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A centrifuge rotor rotating a 8spy7n ts22hxt 10,300 rpm is shut off and is eventually brought uniformly to rest by a frictional torquep2n2s78xt syh of 1.2 $m \cdot N$ If the mass of the rotor is 4.80 kg and it can be approximated as a solid cylinder of radius 0.0710 m, through how many revolutions will the rotor turn before coming to rest,    $rev$ how long will it take?    s

参考答案:     查看本题详细解析

标记此题
62#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The forearm in Fig. 8–4s1fy;o8 x+oqj5 accelerates a 3.6-kg ball at 7 $m/s^2$ by means of the triceps muscle, as shown. Calculate
(a) the torque needed,    $m \cdot N$
(b) the force that must be exerted by the triceps muscle. Ignore the mass of the arm.    N


参考答案:     查看本题详细解析

标记此题
63#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Assume that a 1.00-kg ball i rna+b weigi6 n4n)q 0s0vrp0,s thrown solely by the action of the forearm, which rotaten0 rb 0gsnp6,i0vwnaqr4e+)is about the elbow joint under the action of the triceps muscle, Fig. 8–45. The ball is accelerated uniformly from rest to 10 $m/s$ in 0.350 s, at which point it is released. Calculate
(a) the angular acceleration of the arm,    $rad/s^2$
(b) the force required of the triceps muscle. Assume that the forearm has a mass of 3.70 kg and rotates like a uniform rod about an axis at its end.    N



参考答案:     查看本题详细解析

标记此题
64#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A helicopter rotor bladexm 8p2.(ftmcr can be considered a long thin rod, as shown in Fig. 8–46mxfr.2cp8m t( .
(a) If each of the three rotor helicopter blades is 3.75 m long and has a mass of 160 kg, calculate the moment of inertia of the three rotor blades about the axis of rotation.    $kg \cdot m^2$
(b) How much torque must the motor apply to bring the blades up to a speed of 5 $rev/s$ in 8.0 s?    $m \cdot N$


参考答案:     查看本题详细解析

标记此题
65#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
An Atwood’s machine consists of qcz7u t9x-x9qj 0 - jv6xh.rh-t4 -hw2ld uadbtwo masses, $m_1$ and $m_2$ which are connected by a massless inelastic cord that passes over a pulley, Fig. 8–47. If the pulley has radius R and moment of inertia I about its axle, determine the acceleration of the masses $m_1$ and $m_2$ and compare to the situation in which the moment of inertia of the pulley is ignored. [Hint: The tensions $F_{T1}$ and $F_{T2}$ are not equal. We discussed this situation in Example 4–13, assuming for the pulley.]

参考答案:    

标记此题
66#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A hammer thrower accelerates the hammer from rest wit6y lcx0+)isjmhin four full turns (revolutions) ans6m cxi0)y +jld releases it at a speed of 28 $m/s$ Assuming a uniform rate of increase in angular velocity and a horizontal circular path of radius 1.20 m, calculate
(a) the angular acceleration,    $rad/s^2$
(b) the (linear) tangential acceleration,    $m/s^2$
(c) the centripetal acceleration just before release,    $m/s^2$
(d) the net force being exerted on the hammer by the athlete just before release,    N
(e) the angle of this force with respect to the radius of the circular motion.    $^{\circ} $

参考答案:     查看本题详细解析

标记此题
67#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A centrifuge rotor has a moqo *, gztj4mz,ment of inertia of $3.75 \times10^{-2 }$ $kg \cdot m^2$ How much energy is required to bring it from rest to 8250 rpm?    J

参考答案:     查看本题详细解析

标记此题
68#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  An automobile engine dtp6,j 7h:u bsj4ami7 yevelops a torque of 280 $m \cdot N$ at 3800 rpm. What is the power in watts and in horsepower?    W    hp

参考答案:     查看本题详细解析

标记此题
69#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A bowling ball of mass 7.3 kg and radius 9.0 cm ro38k1 pyqg /owulls without slipping down a lane at 1/ poqyk83ugw3.3 $m/s$ Calculate its total kinetic energy.    J

参考答案:     查看本题详细解析

标记此题
70#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Estimate the kinetic energy of the Earth with rf.nxy s id: ,(xskf:-despect to the Sun as the sum of two d.-xnf fi(kx, s::sydterms,
(a) that due to its daily rotation about its axis,$KE_{daily}$=    $\times10^{29 }$ J
(b) that due to its yearly revolution about the Sun. $KE_{yearly}$+    $\times10^{33 }$ J [Assume the Earth is a uniform sphere with $6 \times10^{ 24}$ kg and $6.4 \times10^{6 }$ m and is $1.5 \times10^{8 }$ km from the Sun.]$KE_{daily}$ + $KE_{yearly}$ =    $ \times10^{33 }$ J

参考答案:     查看本题详细解析

标记此题
71#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A merry-go-round has yb.hlleq,,lc m/b5z1 a mass of 1640 kg and a radius of 7.50 m. How much net work is required to accelerate it from rest to a rotatiobll,ec 1yz5 ,h/b.ml qn rate of 1.00 revolution per 8.00 s? Assume it is a solid cylinder.    J

参考答案:     查看本题详细解析

标记此题
72#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A sphere of radius 20.0 cm and mas8g 5sbp 1h7o /jcs2jz8nd qi4640z 8ybgykiv ns 1.80 kg starts from rest and rolls without sl jhz8 ps y25yos4n61bg8cbvqi0/8g 4idn jkz7ipping down a 30.0 $^{\circ} $ incline that is 10.0 m long.
(a) Calculate its translational and rotational speeds when it reaches the bottom. $v_{CM}$ =    $\omega$ =    $rad/s$
(b) What is the ratio of translational to rotational KE at the bottom?    Avoid putting in numbers until the end so you can answer:
(c) do your answers in (a) and (b) depend on the radius of the sphere or its mass?

参考答案:     查看本题详细解析

标记此题
73#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Two masses, $m_1$ = 18 kg and $m_2$ = 26.5 kg are connected by a rope that hangs over a pulley (as in Fig. 8–47). The pulley is a uniform cylinder of radius 0.260 m and mass 7.50 kg. Initially, is on the ground and $m_2$ rests 3.00 m above the ground. If the system is now released, use conservation of energy to determine the speed of $m_2$ just before it strikes the ground. Assume the pulley is frictionless.    $m/s$


参考答案:     查看本题详细解析

标记此题
74#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A 2.30-m-long pole is balanced vertically on its tip. It starts to fall and frs-d:.p b ,l*,qyi kbxg3 ;pdits lower end doesfyd3g*;pkxbl ,rqs:.,p bid- not slip. What will be the speed of the upper end of the pole just before it hits the ground? [Hint: Use conservation of energy.]    $m/s$

参考答案:     查看本题详细解析

标记此题
75#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  What is the angular momentum of a 0.210-kg ball rotating on the end f8 snav8r8di - g)ra3hof a thin strin a8-id ngrh)8sr3fav 8g in a circle of radius 1.10 m at an angular speed of 10.4 $rad/s$?    $kg \cdot m^2$

参考答案:     查看本题详细解析

标记此题
76#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  (a) What is the angular momentum of a 2.8-kg uniform cylio06t pmwe8st.j9xs. indrical grinding wheel of radius 18 cm when rotatito.8ip 9 mes6jw .s0txng at 1500 rpm?    $kg \cdot m^2$
(b) How much torque is required to stop it in 6.0 s?    $m \cdot N$

参考答案:     查看本题详细解析

标记此题
77#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
A person stands, hands at his side, on a platform that is rotating at fbr7*t job 1+kj:1cgea rate of 1.3rev/s If he raises his arms to a horizontal position, Fig. 8–48, the speed of rotatiokg 1 :cb*7 jrf+tje1obn decreases to 0.8 $rev/s$ (a) Why?
(b) By what factor has his moment of inertia changed?

参考答案:    

标记此题
78#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A diver (such as the one shown in Fig. 8–29) can reduce her mof6 qp-0iudq: 8iofd2vment of inertia by a fac 2q6f0q fvip :udo8-idtor of about 3.5 when changing from the straight position to the tuck position. If she makes 2.0 rotations in 1.5 s when in the tuck position, what is her angular speed ($rev/s$) when in the straight position?   $rev/s$


参考答案:     查看本题详细解析

标记此题
79#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A figure skater can incr *nci/lq-fkc/ease her spin rotation rate from an initial rate of 1.0 rev every 2.0 sf*k-cqicn / l/ to a final rate of 3 $rev/s$ If her initial moment of inertia was 4.6 kg*$m^2$ what is her final moment of inertia? How does she physically accomplish this change?    $kg \cdot m^2$

参考答案:     查看本题详细解析

标记此题
80#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A potter’s wheel is rotating around 1exsh14y3xn s2rbr.j q5sj e2 a vertical axis through its center at a frequency of 1.5rev/s The wheel can be considered a uniform disk of mass 5.0 kg and diameter 0.40 m. The potter then throws a 3.1-kg chunk of clay, approximately shaped as a flat disk of radius 8.0 cm451snb e1q2 2rjjhxs .yesx3r , onto the center of the rotating wheel. What is the frequency of the wheel after the clay sticks to it?    $rev/s$

参考答案:     查看本题详细解析

标记此题
81#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  (a) What is the angular momentup0js)6jz5fukc-ps e, x8 y5vr m of a figure skater spinning at 3.5 $rev/s$ with arms in close to her body, assuming her to be a uniform cylinder with a height of 1.5 m, a radius of 15 cm, and a mass of 55 kg?    $kg \cdot m^2$
(b) How much torque is required to slow her to a stop in 5.0 s, assuming she does not move her arms?    $m \cdot N$

参考答案:     查看本题详细解析

标记此题
82#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Determine the angular momentum of on6q1pss jf1qqh: 0 g1the Earth
(a) about its rotation axis (assume the Earth is a uniform sphere),    $\times 10^{33} \; kg \cdot m^2$

(b) in its orbit around the Sun (treat the Earth as a particle orbiting the Sun). The Earth has mass $6 \times 10^{24} \; kg$ and radius $6.4 \times 10^{6} \; m$ and is $1.5 \times 10^{8} \; km$ from the Sun.    $\times10^{40} \; kg \cdot m^2$

参考答案:     查看本题详细解析

标记此题
83#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
A nonrotating cylindrical diskj;avsv4(/ mnw of moment of inertia I is dropped onto an identical disv mv/;w4naj(s k rotating at angular speed $\omega$ Assuming no external torques, what is the final common angular speed of the two disks?
参考答案:    

标记此题
84#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A uniform disk turns ctvhb rm/tjm1fd00) pg 3nne( ,6vxw)at 2.4 $rev/s$ around a frictionless spindle. A nonrotating rod, of the same mass as the disk and length equal to the disk’s diameter, is dropped onto the freely spinning disk, Fig. 8–49. They then both turn around the spindle with their centers superposed. What is the angular frequency in rev/s of the combination?    $rev/s$


参考答案:     查看本题详细解析

标记此题
85#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A person of mass 75 kg stands at the center of a rogb.(;wud0xiio4 p h h5tating merry-go-round platform of radius 3.0 m and moment of inerbwu po5;i dgihh 4.(x0tia 920 $kg \cdot m^2$ The platform rotates without friction with angular velocity 2 $rad/s$ The person walks radially to the edge of the platform.
(a) Calculate the angular velocity when the person reaches the edge.    $rad/s$
(b) Calculate the rotational kinetic energy of the system of platform plus person before and after the person’s walk.$KE_i$ =    J $KE_f$ =    J

参考答案:     查看本题详细解析

标记此题
86#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A 4.2-m-diameter merry-go-round is rotating freely with an angular velot5q1/ a9srqcqd17 tl4kwy4t bzt(ac;city of 0.a5 s c(l11ra44 qc ;7bty/dtzwqt tk9q8 $rad/s$ Its total moment of inertia is 1760 $kg \cdot m^2$ Four people standing on the ground, each of mass 65 kg, suddenly step onto the edge of the merry-go-round. What is the angular velocity of the merry-go-round now?    $rad/s$ What if the people were on it initially and then jumped off in a radial direction (relative to the merry-go-round)?    $rad/s$

参考答案:     查看本题详细解析

标记此题
87#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Suppose our Sun eventually collapses into twprg2lrbic 1)97r1 h a white dwarf, losing about half its mass in the process, and windincbh 27l trir1p)wr1 g9g up with a radius 1.0% of its existing radius. Assuming the lost mass carries away no angular momentum, what would the Sun’s new rotation rate be?(round to the nearest integer)$\approx$    $rad/s$ (Take the Sun’s current period to be about 30 days.) What would be its final KE in terms of its initial KE of today?$KE_{f}$=    $KE_{i}$

参考答案:     查看本题详细解析

标记此题
88#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Hurricanes can involve winds in excess o5 wd6y6zah2ljz k jjgvei)l7.6ar u -1f 120 $km/h$ at the outer edge. Make a crude estimate of
(a) the energy,    $ \times10^{16 }$ J
(b) the angular momentum, of such a hurricane, approximating it as a rigidly rotating uniform cylinder of air (density 1.3 $kg \cdot m^2$) of radius 100 km and height 4.0 km.    $ \times10^{20 }$ $kg \cdot m^2$

参考答案:     查看本题详细解析

标记此题
89#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  An asteroid of mass w 2f-ly7w ifa-1rj :-h e1xgyu$ 1.0\times10^{ 5}$ traveling at a speed of relative to the Earth, hits the Earth at the equator tangentially, and in the direction of Earth’s rotation. Use angular momentum to estimate the percent change in the angular speed of the Earth as a result of the collision.    $\times10^{-16 }$ %

参考答案:     查看本题详细解析

标记此题
90#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
A person stands on a platform, initially at rest, that can rotate freely witho80y1v8wlpoy2j:u og mut friction. The moment1 8vy0uylo8j :p2gwmo of inertia of the person plus the platform is $I_P$ The person holds a spinning bicycle wheel with its axis horizontal. The wheel has moment of inertia $I_W$ and angular velocity $\omega_W$ What will be the angular velocity $\omega_W$ of the platform if the person moves the axis of the wheel so that it points (a) vertically upward, (b) at a 60º angle to the vertical, (c) vertically downward? (d) What will $\omega_P$ be if the person reaches up and stops the wheel in part (a)?
参考答案:    

标记此题
91#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Suppose a 55-kg person stands at the edge of a 6.5-m diameter merry-go-round x)emx/(q e hg94za4)p7 zebvj turntable that is mounted on frictionleszb z/xhmqe)eg vax7 4e(9jp4) s bearings and has a moment of inertia of 1700 $kg \cdot m^2$ The turntable is at rest initially, but when the person begins running at a speed of 3.8 $m/s$ (with respect to the turntable) around its edge, the turntable begins to rotate in the opposite direction. Calculate the angular velocity of the turntable.    $rad/s$

参考答案:     查看本题详细解析

标记此题
92#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
A large spool of rope rolls on the ground with the end of t ad; a9casmtiq )o9;f4he rope lying on the top edge of the spool. A person grabs the end of the rope and walks a distance L, holding onto it, Fig. 8–50. The spool rolls behind the person without slipping. What length of ropeads miaa;)994co;q f t unwinds from the spool? How far does the spool’s center of mass move?
参考答案:    

标记此题
93#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The Moon orbits the Earth such that the same side always faces thzn:le4b(o:jsz t0* .s elr 6n *lttr*he Earth. Determine the ratio of the Moon’s spin angular momentum (about its own axis) to its orbital angular momentum. (In the latter case, treatrs b*z0n 6*tle*s.l(h znttj 4 :lero: the Moon as a particle orbiting the Earth.)    $\times10^{ -6}$

参考答案:     查看本题详细解析

标记此题
94#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A cyclist accelerate4hy5w af 6srt,s from rest at a rate of 1 m/$s^2$ How fast will a point on the rim of the tire at the top be moving after 3.0 s? [Hint: At any moment, the lowest point on the tire is in contact with the ground and is at rest — see Fig. 8–51.]    $m/s$


参考答案:     查看本题详细解析

标记此题
95#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A 1.4-kg grindstone i2b0hhdpec0hx.fs vkh4 5 /yg*n the shape of a uniform cylinder of radius 0.20 m acquires a rotational rate of hcxsphg4.h hvb*0 kf2 /ey0d5from rest over a 6.0-s interval at constant angular acceleration. Calculate the torque delivered by the motor.    $m \cdot N$

参考答案:     查看本题详细解析

标记此题
96#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  (a) A yo-yo is made of two solid cylindrical disks, each of mass 0.050m/nx:2sob )kt)lso/ t gay:4ra n+i1l kg and diameter 0.075 m, jolxyoait:rs) /):nto+1 n/gls a b42m kined by a (concentric) thin solid cylindrical hub of mass 0.0050 kg and diameter 0.010 m. Use conservation of energy to calculate the linear speed of the yo-yo when it reaches the end of its 1.0-m-long string, if it is released from rest.    $m/s$
(b) What fraction of its kinetic energy is rotational?    %

参考答案:     查看本题详细解析

标记此题
97#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  (a) For a bicycle, how is the angular ssj2:cfv- 7tzs8 hp3xcpeed of the rear wheel ($\omega_R$) related to that of the pedals and front sprocket ($\omega_F$) Fig. 8–52? That is, derive a formula for ($\omega_R$)/($\omega_F$) Let $N_F$ and $N_R$ be the number of teeth on the front and rear sprockets, respectively. The teeth are spaced equally on all sprockets so that the chain meshes properly.
(b) Evaluate the ratio ($\omega_R$)/($\omega_F$) when the front and rear sprockets have 52 and 13 teeth, respectively,   
(c) when they have 42 and 28 teeth.   


参考答案:     查看本题详细解析

标记此题
98#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Suppose a star the size of our Sun, but with mass 8.0 times as great, wertd jhgeu5-p8,p7-hbrl/ft h -e rotating at a speed of 1.0 revolution every 12 days. If it were to undergo gravitational collapse to a neutron star of radius 11 km, losing three-qua5bfrpu-ph j-/8hd, g7lt- h etrters of its mass in the process, what would its rotation speed be? Assume that the star is a uniform sphere at all times, and that the lost mass carries off no angular momentum.    $\times10^{9 }$ $rev/day$

参考答案:     查看本题详细解析

标记此题
99#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  One possibility for a low-pollution as)-; u8wx lcxxgh .74dwcojr5 utomobile is for it to use energy stored in a heavy rotating flywheel. Suppose such a car has a total mass of 1400 kg, uses a uniform cylindg) hw.rul-jx xc8x7 w d45;socrical flywheel of diameter 1.50 m and mass 240 kg, and should be able to travel 350 km without needing a flywheel “spinup.”
(a) Make reasonable assumptions (average frictional retarding force = 450N twenty acceleration periods from rest to equal uphill and downhill, and that energy can be put back into the flywheel as the car goes downhill), and show that the total energy needed to be stored in the flywheel is about $ 1.7\times10^{8 }$J.    $ \times10^{ 8}$ J
(b) What is the angular velocity of the flywheel when it has a full “energy charge”?    $rad/s$
(c) About how long would it take a 150-hp motor to give the flywheel a full energy charge before a trip? $\approx$    min

参考答案:     查看本题详细解析

标记此题
100#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Figure 8–53 illustrates a,nwrfl/o* w(an $H_2O$ molecule. The O–H bond length is 0.96 nm and the H–O–H bonds make an angle of 104 $^{\circ} $. Calculate the moment of inertia for the $H_2O$ molecule about an axis passing through the center of the oxygen atom
(a) perpendicular to the plane of the molecule,    $\times10^{-45 }$ $kg \cdot m^2$
(b) in the plane of the molecule, bisecting the H–O–H bonds.    $ \times10^{-45 }$ $kg \cdot m^2$


参考答案:     查看本题详细解析

标记此题
101#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A hollow cylinder (hoop) is rolling on a horizo(f:3st w toqe*7th)edntal surface at speed v=3.3 $m/s$ when it reaches a 15 $^{\circ} $ incline.
(a) How far up the incline will it go? $\approx$    m (round to one decimal place)
(b) How long will it be on the incline before it arrives back at the bottom?    s

参考答案:     查看本题详细解析

标记此题
102#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
A uniform rod of mass M and length L can pivot freely (l90- -3 g. umsmqsik-b7 xqvcii.e., we ignore friction) about a hinge attached to a wall, as in Fig. 8–54. The rod is held horizontally and then released. At the moment of release, determine (a) the angular acceleration of the rod, 3 b q-mis-v0.lxcq7um g- i9ksand (b) the linear acceleration of the tip of the rod. Assume that the force of gravity acts at the center of mass of the rod, as shown. [Hint: See Fig. 8–21g.]

参考答案:    

标记此题
103#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
A wheel of mass M has radius R. It is standing verrm 9*ivtu wg5s:ll5w+tically on the floor, and we want to exert a horizontal force F at its axle so that it will climb a step against w:g+lm5t 5r*swiv 9wluhich it rests (Fig. 8–55). The step has height h, where h

参考答案:    

标记此题
104#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A bicyclist traveling with speed v=4.2m/s on a flat road is making a turn with t0 ,slenj nr712j sy7oa radius tj,2ne1nolrsys7j 70 The forces acting on the cyclist and cycle are the normal force $\left(\mathbf{\vec{F}}_{\mathrm{N}}\right)$ and friction force $\left(\mathbf{\vec{F}}_{\mathbf{fr}}\right)$ exerted by the road on the tires, and $m\vec{\mathbf{g}}$ the total weight of the cyclist and cycle (see Fig. 8–56).
(a) Explain carefully why the angle $\theta$ the bicycle makes with the vertical (Fig. 8–56) must be given by tan $\tan\theta=F_{\mathrm{fr}}/F_{\mathrm{N}}$ if the cyclist is to maintain balance.(round to the nearest integer)
(b) Calculate $\theta$ for the values given.    $^{\circ} $
(c) If the coefficient of static friction between tires and road is $\mu_s=0.70$ what is the minimum turning radius?    m



参考答案:     查看本题详细解析

标记此题
105#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Suppose David puts a 0.50-kg rock into a sling of length 1.5 m and beg3;f/ pos sxg4iins whirling the rock in a nearly horizontal c/gp4 fxisso;3ircle above his head, accelerating it from rest to a rate of 120 rpm after 5.0 s. What is the torque required to achieve this feat, and where does the torque come from?    $m \cdot N$

参考答案:     查看本题详细解析

标记此题
106#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Model a figure skater’s body as a solid cylinder and her arms as thidkf;t0f0gm/ 7m +cx oqn rods, making reasonable estimates for the dimensions. Then calculate the ratio of the angular speeds for a spinning skater with outstretchtfkqfm/0 omxg0d +; 7ced arms, and with arms held tightly against her body.   

参考答案:     查看本题详细解析

标记此题
107#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  You are designing a clutch assemblhhfwz6y04 h k+ zde/f9y which consists of two cylindrical plates, of mass h/d0 6yz+wfh9zf4khe $M_{\mathrm{A}}=6.0$ $\mathrm{kg}$ and $M_{\mathrm{B}}=9.0$ $\mathrm{kg}$ with equal radii R=0.60 $\mathrm{m}$ They are initially separated (Fig. 8–57). Plate $M_{\mathrm{A}}$ is accelerated from rest to an angular velocity $\omega_1=7.2$ $\mathrm{rad/s}$ in time $\Delta t=2.0$ s Calculate
(a) the angular momentum of $M_{\mathrm{A}}$    $kg \cdot m^2$
(b) the torque required to have accelerated $M_{\mathrm{A}}$ from rest to $\omega_{1}$    $m \cdot N$
(c) Plate $M_{\mathrm{B}}$ initially at rest but free to rotate without friction, is allowed to fall vertically (or pushed by a spring), so it is in firm contact with plate $M_{\mathrm{A}}$ (their contact surfaces are high-friction). Before contact, $M_{\mathrm{A}}$ was rotating at constant $\omega_{1}$ After contact, at what constant angular velocity $\omega_{s}$ do the two plates rotate?    $rad/s$


参考答案:     查看本题详细解析

标记此题
108#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A marble of mass m and radius r rolls along the looped rough cidtd;muz p2y xw:)-8i iny22track of Fig. 8–58. What is the minimum value of the vertical height h that the marble must drop if it is to reach the highest point of the loop without leaving the trackmczdiy-;t puiyn82w ) 22 dx:i? Assume $r\ll R$ and ignore frictional losses. h =    R



参考答案:     查看本题详细解析

标记此题
109#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Repeat Problem 84, but do not /rs+ p-ber efr;73w7,idukc cassume $r\ll R$ h =    (R-r)

参考答案:     查看本题详细解析

标记此题
110#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The tires of a car make 85 revolutions as the car re1/icb-qcdl hn s (9+fc ,r05ka,s gy sjq-f0laduces its speed uniformly from 90km/h to 60km/h The tires have a diameter of 0.90 m. (a) W1fg(-aasyrls0b9lj+,,q5q nckh id- /c c0 sfhat was the angular acceleration of each tire? $\approx$    $rad/s^2$(round to two decimal place)
(b) If the car continues to decelerate at this rate, how much more time is required for it to stop?    s

参考答案:     查看本题详细解析

  • :
  • 总分:110分 及格:66分 时间:不限时
    未答题: 已答题:0 答错题:
    当前第 题,此次习题练习共有 110 道题
    本系统支持习题练习,作业与考试三大模式,作业考试自动评分,成绩排序一键导出,可设定动态变量同一试卷千人千题
    如果您对本系统感兴趣,想加入我们或者想进行任何形式的合作,请加微信 skysky1258

    浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

    GMT+8, 2025-4-26 19:09 , Processed in 0.331353 second(s), 242 queries , Redis On.