In putting, the force with
65 e/xzgd 7jbe, hw xk447jr:tlnm(lpwhich a golfer strikes a ball is planned so that the ball will stop within some small distance of the cup, say, 1.0 m long or short, in case the putt is missed. Accomplishing this from an uphill lie (that is, putting downhill, see Fig. 2–39) is more difficult than from a downhill lie. To see why, assume that on a part
zwlj:x6nrb4 7l7kje,t gh4m d(x5/epicular green the ball decelerates constantly at $20 m/s^2$ going downhill, and constantly at $3.0 m/s^2$ going uphill. Suppose we have an uphill lie 7.0 m from the cup. Calculate the allowable range of initial velocities we may impart to the ball so that it stops in the range 1.0 m short to 1.0 m long of the cup.
m/s to
m/sDo the same for a downhill lie 7.0 m from the cup.
m/s to
m/sWhat in your results suggests that the downhill putt is more difficult?