A circle is drawn on an Argand diagram as shown below. The tan
p3v6d; tmq0hygent to the circle from the point B(0,9) meets the circle
vdt m63;hqy0p at the point A as shown. Let w= OA$^{→}$.
1.Show that ∣w∣=3$\sqrt{3}$.
2.Find arg w.w=$\frac{\pi}{x}$,x=
.
3.Hence write w in the form a+bi where a,b∈R.
w=$\frac{3\sqrt{3}}{x}+\frac{y}{2}i$,x=
, y=
.