题库网 (tiku.one)

 找回密码
 立即注册

 

      

上传图片附件

未使用图片

小贴士: 允许的图片文件格式为: gif, jpg, jpeg, png, webp,上传完成后会在上方生成预览,用鼠标连续双击缩略图,或拖动缩略图,该图片就被绑定至本题,显示在题目下方

本次作答已使用

小贴士: 此栏目显示的是当前作答使用的所有图片,绑定到某一题目的图片同时会显示在该题目下方; 删除使用的图片会将其转移到<未使用图片>类别


习题练习:IB MAI HL Functions Topic 2.1 Linear Equations & Graphs



 作者: admin   总分: 16分  得分: _____________

答题人: 匿名未登录  开始时间: 24年01月24日 21:24  切换到: 整卷模式

标记此题
1#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The diagram below sh.lm w)fozjkba1 m3y7( ows a straight line $L_1$​ which passes through A(0,−2) and B(8,0).

1.Write down the coordinates of the midpoint of line segment [AB]. (a,b) a=   b=  
Another line, $L_2$​ , intersects the $y$-axis at C(0,3) and is parallel to $L_1$​​.
2.Find the gradient of $L_2$​​. $L_2$ =   
3.Find the equation of $L_2$​​​, giving your answer in the form y=mx+c. m =    c =   

参考答案:     查看本题详细解析

标记此题
2#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A small town is planning the constrcxfrwli+51(1 vel . wik .l8lduction of a new road. The new road will pass through the point A(0,5) and will bkx c .iv 1wf8d wlllr.(1+el5ie perpendicular to the road connecting the points B(3,0) and C(6,6). This information is shown in the following diagram.





1.Find the gradient of the line through points B and C. $m_{BC}$ =   
2.Hence, state the gradient of the line through points A and D. $m_{AD}$ =   
3.Find the equation of the line through A and D. Give your answer in the form y=mx+c. m =    c =   
4.Point D lies on the x-axis. Find the coordinates of point D. (a,b) a=   b=  

参考答案:     查看本题详细解析

标记此题
3#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The equation of a line ,d,tzp) cs pi)c n4+rp$L_1$​ is y=0.5x+p. The point A(2,−1) lies on $L_1$
1.Find the value of p. p =   
A second line, $L_2$​ , is perpendicular to $L_1$​ and intersects $L_1$​ at point A.
2.Find the gradient of $L_2$​. $L_2$ =   
3.Find the equation of $L_2$​. Give your answer in the form y=mx+c. m =    c =   
4.Write your answer to part (c) in the form ax+by+d=0, where a,b,d∈Z. a =    b =    c =   

参考答案:     查看本题详细解析

标记此题
4#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The equation of a line++n mjiq3r5 vi $L_1$​ is y−3x+5=0.
1.For the line $L_1$​​, find:
(1)the $x$-intercept;x =   
(2)the gradient. y = ax+b a =    b =   
A second line, $L_2$​​, intersects the $y$-axis at P(0,2)(0,2) and is parallel to $L_1$​.
2.Find the equation of $L_2$​. Give your answer in the form y=mx+c. m =    c =   
A third line, $L_3$​, passes through the point Q(3,1) and is perpendicular to $L_1$​​​.
3.Find the gradient of the line $L_3$. $m_{L_3}$ =   
4.Find the equation of $L_3$, giving your answer in the form ax+by+d=0,
where a,b,d∈Z. a =    b =    d =   

参考答案:     查看本题详细解析

标记此题
5#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The diagram shows the straighthsak39 mqa 4 ml,h )5pp-p8w :vd;tddc line $L_1$​, which intersects the $x$-axis at A(−8,0) and the $y$-axis at B(0,4).


1.Write down the coordinates of M, the midpoint of line segment [AB]. (a,b) a=   b=  
2.Calculate the gradient of $L_1$​.
The line $L_2$​ is perpendicular to $L_1$​ and passes through the point P(1,2). $L_1$ =   
3.Find the equation of $L_2$​. Give your answer in the form y=mx+c. m =    c =   

参考答案:     查看本题详细解析

标记此题
6#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The straight line, $L_1$​, has the equation y=$\frac{1}{3}$x−5.
1.Write down the $y$-intercept of $L_1$​​. (a,b) a=   b=  
2.Write down the gradient of $L_1$​​. $mL_1$ =   
The line $L_2$​​ is perpendicular to $L_1$​ and passes through the point A(2,4).
3.Find the gradient of $L_2$​. $mL_2$ =   
4.Find the equation of $L_2$, giving your answer in the form ax+by+d=0,
where a,b,d∈Z. a =    b =    d =   

参考答案:     查看本题详细解析

标记此题
7#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The coordinates of point P are(−4,6) and the coordin .dl-d *nq)jles njdz5.k66iuates of point Q are(5,1). M is thejz qd -uil6sdn.k* e6nl5.j )d midpoint of [PQ].
1.Find the coordinates of M.
$L_1$​ is the line which passes through P and Q. (a,b) a=   b=  
2.Find the gradient of $L_1$.
A new line, $L_2$, is perpendicular to $L_1$ and passes through M. $m_{L_1}$ =   
3.(1)Write down the gradient of $L_2$​. $m_{L_2}$ =   
(2)Write down the equation of $L_2$ in the form y=mx+c. m =    c =   

参考答案:     查看本题详细解析

标记此题
8#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The coordinates of point K are (−2,−3) and the coo6nxmow 89iy7zr. r9 nqrdinates of point N are (8,6). M is the midp97r9y xz.nmqwi 86ornoint of [KN].
1.Find the coordinates of M.
$L_1$​ is the line which passes through K and N. (a,b) a=   b=  
2.Find the gradient of $L_1$.
A new line, $L_2$​, is perpendicular to $L_1$ and passes through M. $L_1$ =   
3.(1)Write down the gradient of $L_2$​.$L_2$ =   
(2)Write down the equation of $L_2$ in the form y=mx+c. m =    c =   

参考答案:     查看本题详细解析

标记此题
9#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The equation of a lilys(7evl;2,- pivho hne $L_1$​ is 2x+3y=−5.
1.Find the gradient of $L_1$​.
A second line, $L_2$, is perpendicular to $L_1$​. $mL_1$ =   
2.Find the gradient of $L_2$​.
The point P(4,0)(4,0) lies on $L_2$. $mL_1$ =   
3.Find the equation of $L_2$, giving your answer in the form ax+by+d=0, where a,b,d∈Z. a =    b =    d =   
The point Q is the intersection of $L_1$​ and $L_2$.
4.Find the coordinates of (a,b) a=   b=  

参考答案:     查看本题详细解析

标记此题
10#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The coordinates of point A are (6,−3) and the coordinates of point B are (−2,− y23v hjkn ;h.dhau-7e1)..khuvyen -73j dahh;2 $L_1$ is the line which passes through A and B.
1.Find the equation of $L_1$.
Point M is the midpoint of [AB]. The line $L_2$​ is perpendicular to $L_1$​and passes through M. y = ax+b a =    b =   
2.Find the equation of$L_2$. y = ax+b a =    b =   

参考答案:     查看本题详细解析

标记此题
11#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The coordinates of point A are (−1,−7) and theimx;g0fl ye++fv : nv3 coordinates of point B are (5,2).vlmg:yfi+3fe v+0x ;n $L_1$ is the line which passes through A and B.
1.Find the equation of $L_1$​.
Point M is the midpoint of [AB]. The line $L_2$ is perpendicular to $L_1$​ and passes through M. y = ax+b a=    b =   
2.Find the equation of $L_2$​. y = ax+b a=    b =   

参考答案:     查看本题详细解析

标记此题
12#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The diagram below shows the straight lines 3hx5ippw, p ;b5id38dvwr4yp$L_1$1​ and $L_2$.

1.Find:
(1)the gradient of $L_1$​; $mL_1$ =   
(2)the equation of $L_1$​, giving your answer in the form y=mx+c. m =    c =   
The equation of $L_2$​ is x−2y=0. y =   
2.Find the area of the shaded triangle. A =   

参考答案:     查看本题详细解析

标记此题
13#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Bruce goes into a car dealersch; ef0m1 q,lbhip to purchase a new vehicle. The one he wants to buy costs 16000 dollars , however he doesn't have that much money in his bank. The ;hl qecm10b f,salesman offers him a financing option of a 30 % deposit followed by 12 monthly payments of 1150 dollars.
1.Find the amount of the deposit. PV =   
2.Calculate the total cost of the loan under this financing option.
Bruce's father generously offers him an interest free loan of 16000 dollars to buy the car to avoid the expensive loan repayments. They agree that Bruce will repay the loan by paying his father $x$ in the first month and $y$ every following month until the 16000 dollars is repaid.
The total amount Bruce's father receives after 12 months is 5200 dollars. This can be expressed by the equation x+11y=5200. The total amount that Bruce's father receives after 24 months is 10600dollars.FV =   
3.Write down a second equation involving x and y. ax+by=c a =    b =    c =   
4.Determine the value of x and the value of y. x =    y =   
5.Calculate the number of months it will take Bruce's father to receive
the 16000 dollars. n =   
Bruce decides to buy a cheaper car for 12000 dollars and invest the remaining 4000 dollars. He is considering two investment options over four years.
Option A: Compound interest at an annual rate of 6.5 %.
Option B: Compound interest at a nominal annual rate of 6 %, compounded monthly.
Express each answer in part (f) to the nearest dollar.
6.Calculate the value of each investment option after four years.
(1)Option A. ≈   
(2)Option B. ≈   




参考答案:     查看本题详细解析

标记此题
14#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The diagram below shows the triangle ABC. The point C has cooru2r/ n * if mf.)erp-p64tfxcadinates (9,5) and the equa4t* 2 -m.6fx )i rfanpucer/pftion of the line (AB) is x+4y=12.

1.Find the coordinates of:
(1)A; y =   
(2)B. x =   
2.Show that the length of [AB] is 12.412.4 correct to three significant figures. AB ≈   
The point D lies on the line (AB). The line (CD) is perpendicular to the line (AB).
3.Find:
(1)the gradient of (CD); $m_{CD}$ =   
(2)the equation of (CD). y =ax+b a =    b =   
4.Find the coordinates of D. (a,b) a=   b=  
5.Calculate the length of [CD] correct to three significant figures. CD ≈   
6.Calculate the area of triangle ABC. A ≈   

参考答案:     查看本题详细解析

标记此题
15#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The equation of the lecb9.gla l ,ewb8f4wa+x )f7z ine $L_1$​ is 3y−x−5=0. The line $L_1$ is shown on the diagram below.

The point K has coordinates(4,3). The point T has coordinates (2,−3). The point M is the midpoint of [TK].
1.lculate the coordinates of the point M. (a,b) a=   b=  
2.Show that the point K lies on the line $L_1$​.
3.lculate the length of [TK]. TK ≈   
The line $L_2$​ passes through the point M and is perpendicular to $L_1$​.
4.Find the gradient of the line $L_2$. gradients is   
5.Find the equation of $L_2$​. Give your answer in the form ax+by+d=0, where a,b and d are integers.
The point N is the intersection of $L_1$​ and $L_2$. ax+by+c=0 a =    b =    c =   
6.lculate the coordinates of N. (a,b) a=   b=  




参考答案:     查看本题详细解析

标记此题
16#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The line $L_1$​ has equation 2y−x−10=0 and is shown on the diagram.

The point A has coordinates (2,6)(2,6).
1.Show that A lies on $L_1$​.
The point C has coordinates (8,18)(8,18). M is the midpoint of [AC].
2.Find the coordinates of M. (a,b) a=   b=  
3.Find the length of [AC]. AC ≈   
The straight line, $L_2$​, is perpendicular to [AC] and passes through M.
4.Show that the equation of $L_2$ is 2y+x−29=0.
The point D is the intersection of $L_1$ and $L_2$.
5.Find the coordinates of D.
The length of [MD] is $\frac{5\sqrt{5}}{4}$​​. (a,b) a=   b=  
6.Write down the length of [MD] correct to three significant figures.
The point B is such that ABCD is a rhombus. MD ≈   
7.Find the area of ABCD. the area ≈   

参考答案:     查看本题详细解析

  • :
  • 总分:16分 及格:9.6分 时间:不限时
    未答题: 已答题:0 答错题:
    当前第 题,此次习题练习共有 16 道题
    本系统支持习题练习,作业与考试三大模式,作业考试自动评分,成绩排序一键导出,可设定动态变量同一试卷千人千题
    如果您对本系统感兴趣,想加入我们或者想进行任何形式的合作,请加微信 skysky1258

    浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

    GMT+8, 2025-1-28 11:06 , Processed in 0.124844 second(s), 53 queries , Redis On.