题库网 (tiku.one)

 找回密码
 立即注册

 

      

上传图片附件

未使用图片

小贴士: 允许的图片文件格式为: gif, jpg, jpeg, png, webp,上传完成后会在上方生成预览,用鼠标连续双击缩略图,或拖动缩略图,该图片就被绑定至本题,显示在题目下方

本次作答已使用

小贴士: 此栏目显示的是当前作答使用的所有图片,绑定到某一题目的图片同时会显示在该题目下方; 删除使用的图片会将其转移到<未使用图片>类别


习题练习:Geometry & Shapes



 作者: admin发布日期: 2024-07-09 18:13   总分: 57分  得分: _____________

答题人: 匿名未登录  开始时间: 24年07月09日 18:13  切换到: 整卷模式

标记此题
1#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram shows a circle with the centre Ozf7w -*s,u:+txfcf/uy:y/cv 91e wd t3ovrth and radius 8 cm.



Points $\mathrm{A}$, $\mathrm{B}$ lie on the circle and $\mathrm{AO}$ $\mathrm{B}=1.4$ radians.
1. Find the length of the minor arc A B .    $cm^2$
2. Find the area of the shaded region.    $cm^2$

参考答案:     查看本题详细解析

标记此题
2#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram shows a circle with centre O and dl+j5nfz 2g8z radius 10 cm.


Points $ \mathrm{A}$, $\mathrm{B}$ lie on the circle and $\mathrm{AO}$ $\mathrm{B}=2.2$ radians.
1. Find:
1. the length of the minor arc A B ;    cm
2. the perimeter of the shaded region.    cm
2. Find the area of the shaded region.    $cm^2$

参考答案:     查看本题详细解析

标记此题
3#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The diameter of a spherir9uzi m4hla)+ cal object is 3 $\times 10^{8} \mathrm{~cm}$ .
1. Write down the radius of the object.

The volume of the object can be expressed in the form $ \pi\left(a \times 10^{k}\right) \mathrm{cm}^{3} $ where $1 \leq a<10$ and k$ \in \mathbb{Z}$ .    $\times 10^8$
2. Find the value of a and the value of k . a =    k =   

参考答案:     查看本题详细解析

标记此题
4#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram shows a circle wit9i40-we+a+;heb v; tfof mmo ch centre O and radius 8 cm.



Points $\mathrm{A}$, $\mathrm{B}$ lie on the circle and $\mathrm{AO} \mathrm{B}=2.7$ radians.
1. Find:
1. the length of the major arc A B ; ≈    cm
2. the perimeter of the shaded region. ≈    cm
2. Find the area of the shaded region. ≈    cm

参考答案:     查看本题详细解析

标记此题
5#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  In a triangle $ \mathrm{ABC}$, $\mathrm{AB}=6 \mathrm{~cm}$, $\mathrm{BC}=10 \mathrm{~cm}$ and $\mathrm{CBA}=70^{\circ}$ .
1. Find the area of the triangle. ≈    $cm^2$
2. Find AC.

Give your answers correct to 3 significant figures.≈    cm

参考答案:     查看本题详细解析

标记此题
6#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  In a triangle $ \mathrm{ABC}$, $\mathrm{AB}=4 \mathrm{~cm}$, $\mathrm{BC}=10 \mathrm{~cm}$ and $ \mathrm{CB} A=105^{\circ}$ .
1. Find the area of the triangle A B C .≈    $cm^2$
2. Find AC. ≈    cm

参考答案:     查看本题详细解析

标记此题
7#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram s4w:h fufn2y gu ((ke/thows triangle ABC.




$\mathrm{AC}=14 \mathrm{~cm}, $$\mathrm{CBA}=115^{\circ}$, $\mathrm{BA} \mathrm{C}=38^{\circ} $.

1. Find BC. ≈    cm
2. Find the area of the triangle A B C .≈    $cm^2$

参考答案:     查看本题详细解析

标记此题
8#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A bronze sphere has a ryy/ws/dobg9g ;k ;v2tadius of 10.5 $\mathrm{~cm}$ .
1. Find the volume of the sphere, expressing your answer in the form a $\times 10^{k}$, $1 \leq a<10 $ and $k \in \mathbb{Z}^{+}$ .

The sphere is to be melted down and remoulded into the shape of a cone with a height of 11.9 $\mathrm{~cm}$ .≈    $\times 10^3$cm
2. Find the radius of the base of the cone, giving your answer correct to 3 significant figures.≈    cm

参考答案:     查看本题详细解析

标记此题
9#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A sphere made out of gold has a ro 8ch6. 9a.;ebrqtup zadius of 13.2 $\mathrm{~cm}$ .
1. Find the volume of the sphere, expressing your answer in the form a $\times 10^{k}$, 1 $\leq a<10$ and k $\in \mathbb{Z}^{+} $.

The sphere is to be melted down and remoulded into the shape of a cylinder with a height of 18.4 $\mathrm{~cm}$ .≈    $\times 10^3$cm
2. Find the radius of the base of the cylinder, giving your answer correct to 2 significant figures. ≈    cm

参考答案:     查看本题详细解析

标记此题
10#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram s/vem9e- nk v5yhows triangle $ \mathrm{ABC}$ , with $\mathrm{AB}=7 \mathrm{~cm}$,$ \mathrm{AC}=5 \mathrm{~cm} $, $ 0^{\circ}<\mathrm{BA} \mathrm{C}<90^{\circ}$ and $ \sin (\mathrm{BA} \mathrm{A})=\frac{4}{5}$



1. Find the area of triangle A B C . ≈    $cm^2$
2. Find $\cos (\mathrm{BA} C)$ .   
3. Find BC. $a\sqrt{b}$ ≈   

参考答案:     查看本题详细解析

标记此题
11#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram shows xnml.s,ul vc m wwu w1c(iz52x-4x/6ap dfc(;a right-angled triangle $\mathrm{ABC}$ and a sector ABD of a circle with centre $\mathrm{A}$ . The point $\mathrm{E}$ lies on [AC] such that [BE] is perpendicular to [AC]. The region R is bounded by [DE], [BE] and arc BFD.




$\mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=13 \mathrm{~cm}, \mathrm{BC}=12 \mathrm{~cm}$

1. Find B A C , giving your answer in radians.≈   
2. Find the area of R .≈    $cm^2$

[/BE][/BE]

参考答案:     查看本题详细解析

标记此题
12#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram shows triangle ABC.x o3nmhzh5byw-o y ,3.


1. Find BC.≈    cm
2. Find CBA, given that it is obtuse.≈    $^{\circ}$
3. Find the area of the triangle A B C .≈    $cm ^2$

参考答案:     查看本题详细解析

标记此题
13#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram shows trianjcj0a/b .- emegle ABC.



1. Find A $\hat{C}$ B , given that it is acute.≈    $^{\circ}$
2. Find BC.≈    cm

参考答案:     查看本题详细解析

标记此题
14#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram shows tl*u f j06i1rzkriangle $ \mathrm{PQR}$ , with $\mathrm{PQ}=10 \mathrm{~cm}$, $\mathrm{PR}=6 \mathrm{~cm}$ , $0^{\circ}<\mathrm{Q} \hat{\mathrm{P}} \mathrm{R}<90^{\circ}$ and $ \cos (\mathrm{Q} \hat{\mathrm{P}} \mathrm{R})=\frac{4}{5}$ .



1. Find $\sin (\mathrm{QP} R) $.   
2. Find the area of triangle P Q R .    $cm^2$
3. Find QR.a$\sqrt{b}$ ≈   

参考答案:     查看本题详细解析

标记此题
15#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  In a triangle $ \mathrm{ABC}$, $\mathrm{AB}=12 \mathrm{~cm}$ and $ \mathrm{AC}=15 \mathrm{~cm}$ . The area of the triangle is 80 $\mathrm{~cm}^{2}$ .
1. Find the two possible values for BÂC.≈      
2. Given that BÂC is obtuse, find BC.≈    cm

参考答案:     查看本题详细解析

标记此题
16#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\mathrm{ABCD} \text { is a quadrilateral where } \mathrm{AB}=9 \mathrm{~cm}, \mathrm{BC}=12 \mathrm{~cm}, \mathrm{CD}=11 \mathrm{~cm}, \mathrm{DA}=8.5 \mathrm{~cm} \text { and } \mathrm{AB} \mathrm{C}=90^{\circ} \text {. Find } \mathrm{AD} \hat{\mathrm{D}} \text {, giving your answer correct to the nearest degree. }$ ≈    $^{\circ}$

参考答案:     查看本题详细解析

标记此题
17#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram shows a circle wnb 2c11dco 7t4-goazd ith centre O and radius 5 cm.


Points $ \mathrm{A}$,$ \mathrm{B} $ lie on the circle and $ \mathrm{AO} \mathrm{B}=2.1 $ radians.
1. Find the length of:
1. minor arc A B ;    cm
2. chord A B .≈    cm
2. Find the area of the shaded region.≈    $cm ^2$

参考答案:     查看本题详细解析

标记此题
18#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram shows a h+ cx*;bfzpmewe 6cbd2 +k:xg+i l2g- circle with centre O and radius 7.2 cm.


Points $\mathrm{A}, \mathrm{B}$ lie on the circle and $\mathrm{AO} \mathrm{B}=1.3$sv radians.
1. Find the length of:
1. minor arc A B ;   
2. chord A B .≈    cm
2. Find the area of the shaded region.≈    $cm ^2$

参考答案:     查看本题详细解析

标记此题
19#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { The app logo, for a mobile arcade game, is a sector of a circle of radius } 3 \mathrm{~cm} \text {, shown as shaded in the diagram below. The area of the logo is } 6 \pi \mathrm{cm}^{2} \text {. }$



1. Find, in radians, the measure of the angle AOB.   
2. Find the total length of the perimeter of the logo.   

参考答案:     查看本题详细解析

标记此题
20#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Cabin boy Jim is at the top of a cliffoq6.) bvu:v da on Tortuga Island, standing 100 $\mathrm{~m} $ above the sea level, and observes two ships in the Caribbean sea. The Black Pearl $(\mathrm{P})$ is at an angle of depression of $25^{\circ} $ and the Hispaniola $(\mathrm{H}) $ is at an angle of depression of $50^{\circ} $.
The following three dimensional diagram shows the foot of the cliff at $\mathrm{O}$ , Jim at $\mathrm{J}$ , two ships at $\mathrm{P}$ and $\mathrm{H}$ , and the angle $\mathrm{POH}=75^{\circ}$ .



Find the distance between the two ships, giving your answer correct to 3 significant figures. PH =    m

参考答案:     查看本题详细解析

标记此题
21#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { Consider a triangle with sides } \mathrm{AB}=10 \mathrm{~mm} \text { and } \mathrm{AC}=8 \mathrm{~mm} \text {. Given that the area of the triangle is } 24 \mathrm{~mm}^{2} \text {, find the possible values for the length of }[B C] \text {. }$      
[/B C]

参考答案:     查看本题详细解析

标记此题
22#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram shows triangltu4aarc p vi9y1nug*3 p*c x33e ABC.


The area of the triangle A B C is 22 $\mathrm{~cm}^{2} $.
1. Find A B .≈    cm
2. Find B C .≈    cm
3. Find CBA.≈    $^{\circ}$

参考答案:     查看本题详细解析

标记此题
23#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram shows a cell to(xrr4 rw;xi67voh- jwj a)m-ewer $ \mathrm{AB} 6.4 \mathrm{~m} $ tall on the roof of a commercial building. The angle of depression from $\mathrm{A} to a point \mathrm{C} $ on the horizontal ground is $49^{\circ}$. The angle of elevation of the top of the building from $\mathrm{C} is 45^{\circ}$ .


Find the height of the building. ≈    m

参考答案:     查看本题详细解析

标记此题
24#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram shows part of a circle with centjsx0thl ,g/7q1zx su9c9 ak e+re O and radius 5 cm.


Points $\mathrm{A}, \mathrm{B}$ lie on the circle, chord $\mathrm{AB}$ has a length of 8 $\mathrm{~cm}$ and $\mathrm{AO} \mathrm{B}=\theta$ .
1. Find the value of $ \theta$ , giving your answer in radians.≈   
2. Find the area of the shaded region.≈    $cm ^2$

参考答案:     查看本题详细解析

标记此题
25#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  A loaf pan is made in the shape of a cylinder. The pan has a diametux ox5+9o,fxi48d)g*yatma k er of 24 cm and a height of 5 k x)amox,ufy gdx5*4+i oa9t8 m.



1. Calculate the volume of this pan.

Gloria prepares enough bread dough to exactly fill the pan. The dough was in the shape of a sphere.≈    $cm ^3$
2. Find the radius of the sphere in $\mathrm{cm}$ , correct to one decimal place.

The bread was cooked in a hot oven. Once taken out of the oven, the bread was left in the kitchen. The temperature, T , of the bread, in degrees Celsius, ${ }^{\circ} \mathrm{C}$ , can be modelled by the function

$T(t)=a \times(1.51)^{-\frac{t}{3}}+21, \quad t \geq 0$,

where a is a constant and t is the time, in minutes, since the bread was taken out of the oven. When the bread was taken out of the oven its temperature was 205^{\circ} \mathrm{C} .≈    cm
3. Find the value of a .   
4. Find the temperature that the bread will be 10 minutes after it is taken out of the oven.

The bread can be eaten once its temperature drops to 35^{\circ} \mathrm{C} .≈    $C^{\circ}$
5. Calculate, to the nearest minute, the time since the bread was taken out of the oven until it can be eaten.
6. In the context of this model, state what the value of 21 represents.≈   

参考答案:     查看本题详细解析

标记此题
26#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram shows a right-angl4 sq kn6.,vbsg.pc7 cmed triangle ABC and a sector CBE of a circle with centre C. The point D qcv spmbck .g4,.s67nlies on [AC] such that [BD] is perpendicular to [AC]. The region R is bounded by [BD], [DE] and arc BFE.


Find the area of the shaded region R.≈    $cm ^2$[/BD][/BD]

参考答案:     查看本题详细解析

标记此题
27#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram shows a circle with centre O and radius r cm.The cir iufjw8t ,dck: vy0qov9*.ov7 cle is divided ,ou*q:08kifcvvd w7 jvy9t .ointo three equal sectors.


Points $\mathrm{A}, \mathrm{B}$ lie on the circle and $\mathrm{AO} \mathrm{B}=\theta$ radians.
1. Find the exact value of $\theta$ , giving your answer in terms of $\pi$ .

The area of the shaded sector $\mathrm{AOB} $ is $ 3 \pi \mathrm{cm}^{2}$ .   
2. Find the radius of the circle, r .   cm
3 . Find the length of the chord A B . ≈    cm

参考答案:     查看本题详细解析

标记此题
28#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { The triangle } A B C \text { is equilateral of side } 5 \mathrm{~cm} \text {. The point } D \text { lies on }[B C] \text { such that } D C=2 \mathrm{~cm} \text {. Find } \cos (C \hat{D A}) \text {. }$   

[/B C]

参考答案:     查看本题详细解析

标记此题
29#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  In a triangle $ \mathrm{ABC}$, $\mathrm{AB}=3 \mathrm{~cm}$, $\mathrm{BC}=5 \mathrm{~cm}$ and $\mathrm{ACB}=\frac{\pi}{6}$
1. Find, to three significant figures, the two possible lengths of [AC]      
2. Find the difference between the areas of the two possible triangles A B C .   

参考答案:     查看本题详细解析

标记此题
30#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram shows triangle ABC ann 8ajqny;,o-pd sector ACD of a circle with centre Cno; -p 8,nqayj.


$\mathrm{AC}=5 \mathrm{~cm}, \mathrm{BC}=8 \mathrm{~cm} $, the area of triangle $\mathrm{ABC}=10 \sqrt{3} \mathrm{~cm}^{2}$ .

1. Find AĈB.   
2. Find the exact area of sector ACD.   

参考答案:     查看本题详细解析

标记此题
31#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { The following diagram shows triangle } \mathrm{ABC} \text {, with } \mathrm{AB}=9 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm} \text {, and } \mathrm{ABC}=\frac{\pi}{3} \text {. }$




1. Show that $\mathrm{AC}=3 \sqrt{7} \mathrm{~cm}$ .   
2. The shape in the following diagram is formed by adding a semicircle with diameter [A C] to the triangle.



Find the exact perimeter of this shape.   

参考答案:     查看本题详细解析

标记此题
32#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { The following diagram shows triangle } \mathrm{ABC} \text {, with } \mathrm{AB}=9 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm} \text {, and } \mathrm{ABC}=\frac{\pi}{3} \text {. }$




1. Show that $\mathrm{AC}=3 \sqrt{7} \mathrm{~cm}$ .   
2. The shape in the following diagram is formed by adding a semicircle with diameter [A C] to the triangle.



Find the exact perimeter of this shape.   

参考答案:     查看本题详细解析

标记此题
33#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  $\text { A triangle } \mathrm{ABC} \text { has } a=10.2 \mathrm{~cm}, b=17.5 \mathrm{~cm} \text { and area } 32 \mathrm{~cm}^{2} \text {. Find the largest possible perimeter of triangle } \mathrm{ABC} \text {. }$   

参考答案:     查看本题详细解析

标记此题
34#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram shows a radioactivity warning symbol made out o- 1fnw db8d2*-lu2ddpp;-x-pbowb d x f a circle in the centre and three equal blades. fl--*dxbw dbdwp;-d nxdopp22bu1-8

$\text { Given that } \mathrm{OA}=2 \mathrm{~cm}, \mathrm{AB}=1 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm} \text {, and } \mathrm{CO} \mathrm{D}=30^{\circ} \text {, find the area of the symbol. }$   

参考答案:     查看本题详细解析

标记此题
35#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The diagram below shows a sector of a circle with radi;iidc5fd ,;pmp;f ww 2us r where $\mathrm{AO} \hat{\mathrm{B}}=x $ radians and the length of the $\operatorname{arc}$ A B is $\frac{4}{x} \mathrm{~cm}$ .


$\text { Given that the area of the sector is } 27 \mathrm{~cm}^{2} \text {, find the length of the arc } A B \text {. }$   

参考答案:     查看本题详细解析

标记此题
36#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram shows tarv5airxh2 sv9bjy43*i; k8mhree cities $\mathrm{A}$, $\mathrm{B}$ and $\mathrm{C}$ . City $\mathrm{B}$ is 70 $\mathrm{~km}$ from $\mathrm{A}$ , on a bearing of $130^{\circ}$ . City $ \mathrm{C}$ is 40 $\mathrm{~km} $ from City $\mathrm{B}$ , on bearing of $75^{\circ}$ .



1. Find CBA.   
2. Find the distance from City A to C . ≈   
3. If you wanted to travel from city A directly to City C, find the bearing you would need to travel. ≈   
4. Find the area enclosed by connecting the three cities in a triangle ABC.   

参考答案:     查看本题详细解析

标记此题
37#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram shows quadrilateral ABCD.nzl doofz q)y) 9v( iw)m7:c.d



$\mathrm{AB}=12 \mathrm{~cm}, \mathrm{AD}=4 \mathrm{~cm}, \mathrm{AC} B=85^{\circ}, \mathrm{CBA}=38^{\circ}$ .

1. Find A C .≈   
2. Find the area of triangle A B C .

The area of triangle A B C is three times bigger than the area of triangle A C D .≈   
3. Find the acute angle CÂD.   
4. Find C D .≈   

参考答案:     查看本题详细解析

标记此题
38#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram shows trx 1o0x-7-wbqlok4fgbiangle $ \mathrm{ABC}$ . Point $\mathrm{D}$ lies on [AC] so that [DB] bisects CBEA. The area of the triangle A B C is 3 $\mathrm{~cm}^{2}$ .



$\mathrm{AB}=2 \sqrt{7} \mathrm{~cm}, \mathrm{BC}=x \mathrm{~cm}$ , and $\mathrm{CB} \mathrm{D}=\theta$ , where $\sin \theta=\frac{3}{4}$
Find the value of x in the form of $\frac{a}{b}$ where a and b are positive integers.   

参考答案:     查看本题详细解析

标记此题
39#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
$\text { A right cylinder has height } h \mathrm{~mm} \text { and diameter } x \mathrm{~mm} \text {. The volume of this cylinder is equal to } 45 \mathrm{~mm}^{3} \text {. }$



The total surface area, A , of the cylinder can be expressed as $A=\frac{\pi}{2} x^{2}+\frac{k}{x} $.
1. Find the value of k .
2. Find the value of x that makes the total surface area a minimum.
参考答案:    

标记此题
40#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The diagram below shoqsmar,)gr 5ec/x.c6l ws a circle of radius 9 cm. The points A, B, C and D lie on the cmg 5c)sax. ,6eql/ rrcircle.



1. Find A C . ≈   
2. 1. Find DĈA.≈   
2. Hence find A C $\hat{B}$ .≈   
3. Find the area of triangle A C D .≈   
4. Hence, or otherwise, find the total area of the shaded region.   

参考答案:     查看本题详细解析

标记此题
41#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Consider the following diajr4 -l:xr3zrmgram.




The sides [A B] and [B C] of the isosceles triangle A B C have lengths 5 $\mathrm{~cm}$ and the third side [A C] has length 6 $\mathrm{~cm}$ . The midpoint of [A C] is denoted by $\mathrm{M}$ . The circular arc $\mathrm{AC}$ has centre, G , the midpoint of [BM].
1. 1. Find A G .   
2. Find MGA in radians.≈   
2. Find the area of the shaded region.≈   

[/BM][/B C]

参考答案:     查看本题详细解析

标记此题
42#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  Jack sets out for a horse ride from his family ranch at point )86f susbr20v rvx7uc v+tee; $\mathrm{A} $. He rides at an average speed of 6.3$ \mathrm{~km} / \mathrm{h} $ for 28 minutes, on a bearing of $40^{\circ}$ from the ranch, until he stops for a break near a spring at point B.
1. Find the distance from point $\mathrm{A}$ to point $\mathrm{B}$ .   

$\text { Jack leaves point } \mathrm{B} \text { on a bearing of } 112^{\circ} \text { and continues to ride for a distance of } 5.8 \mathrm{~km} \text { until he reaches a river at point } \mathrm{C} \text {. }$


2. 1. Show that $A \hat{B}$ C is $108^{\circ}$ .   
2. Find the distance from point A to point C . ≈   
3. Find BĈA.

Jack's brother John wants to ride a horse directly from the ranch to meet Jack at point $\mathrm{C} $.   
4. Find the bearing that John must take to point $\mathrm{C} $.

John rides at an average speed of 12.9 $\mathrm{~km} / \mathrm{h}$ .   
5. Find, to the nearest minute, the time it takes for John to reach point $\mathrm{C}$ .≈    minutes

参考答案:     查看本题详细解析

标记此题
43#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The diagram below shows the cross section of a cylindrical pipe,-pe+z1 n+saq pqia-nq h-9n 2f 80 cm in length, carrying water. The pipe has a radiussfp a1ha p9nz-i q2qq-+e+nn- of 15 cm.


The pipe is not at full capacity, such that the chord length of the water level [AB] is20 cm. Find the volume of water in the pipe.   

参考答案:     查看本题详细解析

标记此题
44#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The following diagram f.r mgcz 58z2y2as 5bishows a circular crop field.


The circle has centre O and a radius of 400 $\mathrm{~m}$ , and the points $\mathrm{A}$, $\mathrm{B}$, $\mathrm{C}$ and $\mathrm{D}$ lie on the circle. The angle $\mathrm{AOB}$ is 1.6 radians.
1. Find the length of chord A B .≈   
2. Find the area of triangle A O B .

The angle BOC is 2.5 radians.≈   
3. Find the length of the minor arc AC.≈   
4. Find the area of the shaded region.

The shaded region is to be planted with corn. Corn seeds are sold in bags which cost 140 dollars each. One bag is enough for seeding 8960 $\mathrm{~m}^{2}$ .≈   
5. Find the cost of the corn seeds.   

参考答案:     查看本题详细解析

标记此题
45#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  1. Given that $\theta=18^{\circ}$ satisfies the equation 4 $\sin ^{2} \theta+2 \sin \theta-1=0$ , find the value of $ \sin 18^{\circ}$ .   
2. Hence find the value of $\cos 36^{\circ}$ .   
The following diagram shows the triangle $\mathrm{ABC}$ where $ \mathrm{AB}=4 \mathrm{~cm}, \mathrm{BC}=5 \mathrm{~cm}$ and CBA=$36^{\circ}$ .

$\text { 3. Find } \mathrm{AC} \text { in the form } \sqrt{a+b \sqrt{5}} \mathrm{~cm} \text { where } a, b \in \mathbb{Z} \text {. }$

参考答案:     查看本题详细解析

标记此题
46#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  The diagram below shows a fenced triangular enclosure in the middle of a gras6adv kh5b+gjk q:o+ *kt7-nvro zec) 9sy 6jkz oq be++7o 59kgrk-htvv)ncd*: afield where $\mathrm{AC}=3 \mathrm{~m}, \mathrm{DC}=2 \mathrm{~m}, \mathrm{CB} \mathrm{A}=\alpha $ radians and $ \mathrm{AC} \hat{\mathrm{CB}}=\frac{\pi}{3} $ radians. One end of a rope is attached at point D on the outside edge of the enclosure, and the other end is attached to a goat G . Given that the rope is 6 $\mathrm{~m}$ long and the area of field outside the enclosure that the goat is able to graze is 74 $\mathrm{~m}^{2}$ , find the value of $\alpha$ .≈   




参考答案:     查看本题详细解析

标记此题
47#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  1. Expand and simplify k9/x m yz8ea7r $(1+\sqrt{3})^{2} $.  
2. By writing $75^{\circ} $ as $30^{\circ}+45^{\circ}$ , find the value of $\cos 75^{\circ} $.

The following diagram shows the triangle $\mathrm{ABC}$ where $\mathrm{BC}=\sqrt{6}$, $\mathrm{CA}=2 $ and $ \mathrm{A} \hat{\mathrm{C} B}=75^{\circ}$ .   

$\text { 3. Find } \mathrm{AB} \text { in the form } a+\sqrt{b} \text { where } a, b \in \mathbb{Z} \text {. }$   

参考答案:     查看本题详细解析

标记此题
48#
 
填空题 ( 1.0 分) 切至整卷模式 搜藏此题  
  In a triangle $ \mathrm{ABC}, \mathrm{AB}=2 \mathrm{~cm}, \mathrm{CBA}=\frac{\pi}{4}$ and$ \mathrm{BA} \hat{\mathrm{A}} \mathrm{C}=\theta$.
1. Show that $\mathrm{AC}=\frac{2}{\cos \theta+\sin \theta} $. AC =  (代数式) 
2. Given that $\mathrm{AC} $ has a minimum value, find the value of $ \theta $ for which this occurs.   

参考答案:     查看本题详细解析

标记此题
49#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
In a triangle $\mathrm{ABC}, \mathrm{BA} \mathrm{A} C=60^{\circ}, \mathrm{AB}=(1-x) \mathrm{cm}$, $\mathrm{AC}=(x+3)^{2} \mathrm{~cm}$,$-3\lt x\lt1$
1. Show that the area, A $\mathrm{~cm}^{2}$ , of the triangle is given by

A=$\frac{\sqrt{3}}{4}\left(9-3 x-5 x^{2}-x^{3}\right)$ .

2. 2a Calculate $ \frac{\mathrm{d} A}{\mathrm{~d} x} $.
2b Verify that $\frac{\mathrm{d} A}{\mathrm{~d} x}=0 $ when $x=-\frac{1}{3}$ .
3. 3a Find $\frac{\mathrm{d}^{2} A}{\mathrm{~d} x^{2}} $ and hence verify that $x=-\frac{1}{3}$ gives the maximum area of triangle A B C .
3b Calculate the maximum area of triangle A B C .
3c Find the length of [B C] when the area of triangle A B C is a maximum.

[/B C]
参考答案:    

标记此题
50#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
1. Find the set of values of h that satisfy the inequality 2$ h^{2}-3 h-14>0 $.
2. The triangle A B C is shown in the following diagram.
$\text { Given that } \cos \theta>0.25 \text {, find the range of possible values of } a \text {. }$
参考答案:    

标记此题
51#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Peggy owns a rectangular field, 12 q(z2go 3r pqc4$\mathrm{~m} $ by 5 $\mathrm{~m}$ . Peggy attaches a rope to a metal post at the upper left corner of her field, and attaches the other end to her cow Daisy.
1. Given that the rope is 6 $\mathrm{~m} $ long, calculate the percentage of Peggy's field that Daisy is able to graze. Give your answer correct to the nearest percent.
2. Peggy replaces Daisy's rope with another one of length $\alpha \mathrm{m}, 5<\alpha<12$ , so that Daisy can now graze exactly three quarters of Peggy's field.
Show that $\alpha$ satisfies the equation

5 $\sqrt{\alpha^{2}-25}+\alpha^{2} \arcsin \left(\frac{5}{\alpha}\right)=90$

3. Find the value of $\alpha$ .
参考答案:    

标记此题
52#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
In a triangle $ \mathrm{XYZ}, \mathrm{XY}=9 \mathrm{~cm}, \mathrm{YZ}=x \mathrm{~cm}, \mathrm{XZ}=y \mathrm{~cm} $ and $\mathrm{XY} \mathrm{Y}=45^{\circ}$ .
1. Using the cosine rule, show that $x^{2}-9 \sqrt{2} x+81-y^{2}=0$.

Consider the possible triangles with $\mathrm{XZ}=7 \mathrm{~cm}$ .
2. Calculate the two corresponding values of Y Z .
3. Hence find the area of the smaller triangle.

Consider the case where y , the length of [X Z] , is not fixed at $ 7 \mathrm{~cm}$.
4. Find the range of values of y for which it is possible to form two triangles.
参考答案:    

标记此题
53#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
The diagram below shows two circles with centres at tha,r.kk 27olx8ncwta -e points A and B and radii 3r and 2r, respectively. The point kcnt,ar28lx.-wkao 7B lies on the circle with centre A. The circles intersect at the points C and D.



Let $\alpha$ be the measure of the angle CAD and $\theta $ be the measure of the angle CBD in radians.
1. Find an expression for the shaded area in terms of $ \alpha, \theta$ and r .
2. Show that $ \alpha=4 \arcsin \frac{1}{3}$ .
3. Hence find the value of r given that the shaded area is equal to 16 $\mathrm{~cm}^{2}$ .
参考答案:    

标记此题
54#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
Farmer Edward owns a triangular field with ratio of the 46;i0 1k jelkfuelh i2sides 15: 15: 15 $\sqrt{2}$ . Edward attaches a rope to a wooden post at the right angle corner of his field, and attaches the other end to his cow Gertie.
1. Given that the rope is 10 $\mathrm{~m}$ long, calculate the percentage of Edward's field that Gertie is able to graze. Give your answer correct to the nearest percent.

Edward replaces the rope with another one, this time of length b metres, 102. Show that b satisfies the equation

$b^{2}\left[\frac{\pi}{4}-\arccos \left(\frac{15 \sqrt{2}}{2 b}\right)\right]+\left(\frac{15 \sqrt{2}}{2}\right) \sqrt{b^{2}-\frac{225}{2}}=101.25$ .

3. Find the value of b . Give your answer correct to two decimal places.
参考答案:    

标记此题
55#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
A water truck tank which is 3 metres long has a uniform cross-sectio b 6(6 yr1lgcaoi35t9dtv m+ayn in the shape of a major segment. The tank is divided into two equal parts and is partially filled with water as shown in the following diagram of the cross-section. The centre of the circle is O, th+i9 g6md l ayva 3r6otybc51(te angle AOB is α radians, and the angle AOF is β radians.

1. Given that $\alpha=\frac{\pi}{4}$ , calculate the amount of water, in litres, in the right part
of the water tank. Give your answer correct to the nearest integer.
2. Find an expression for the volume of water V , in $\mathrm{m}^{3}$ , in the left part of the water tank in terms of $\beta$ .

The left part of the tank is now being filled with water at a constant rate of 0.001 $\mathrm{~m}^{3}$ per second.
3. Calculate $\frac{\mathrm{d} \beta}{\mathrm{d} t}$ when $\beta=\frac{3 \pi}{5}$. Round your answer to 3 significant figures.
4. Calculate the amount of time it will take for the left part of the tank to be fully filled with water. Give your answer in minutes and correct to the nearest integer.
参考答案:    

标记此题
56#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
In a triangle $\mathrm{ABC}$ ,

$\begin{array}{l}
5 \sin (\mathrm{ABC})-6 \cos (\mathrm{B} \hat{\mathrm{CA}})=7 \\
6 \sin (\mathrm{B} \hat{\mathrm{C}} \mathrm{A})-5 \cos (\mathrm{ABC})=\sqrt{2}
\end{array}$

1. Show that $\sin (\mathrm{ABC}+\mathrm{B} \hat{\mathrm{BA}})=\frac{1}{6}$ .

James claims that C A B can have two possible values.
2. Show that James is wrong by proving that CÂB has only one possible value.
参考答案:    

标记此题
57#
 
问答题 ( 1.0 分) 切至整卷模式 搜藏此题  
This question ask you to investigate the relationship between the number of /h 9plim0p*1yi/wu0xccb)m-+ ozvu.kohx3 j sides and the area of an enclosureb 3yoc +*zj0xmuiohl 0/1.-pkp cwm9u )/hvxi with a given perimeter.
A farmer wants to create an enclosure for his chickens, so he has purchased 28 meters of chicken coop wire mesh.
1. Initially the farmer considers making a rectangular enclosure.
1. Complete the following table to show all the possible rectangular enclosures with sides of at least $4 \mathrm{~m} $ he can make with the 28$ \mathrm{~m} $ of mesh. The sides of the enclosure are

2. What is the name of the shape that gives the maximum area?

The farmer wonders what the area will be if instead of a rectangular enclosure he uses an equilateral triangular enclosure.
2. Show that the area of the triangular enclosure will be $\frac{196 \sqrt{3}}{9}$ .

Next, the farmer considers what the area will be if the enclosure has the form of a regular pentagon. The following diagram shows a regular pentagon.

Let O be the centre of the regular pentagon. The pentagon is divided into five congruent isosceles triangles and angle $\mathrm{A} \widehat{O}$ B is equal to $ \theta $ radians.
3. 1. Express $\theta$ in terms of $\pi$ .
2. Show that the length of $\mathrm{OA}$ is $\frac{14}{5} \operatorname{cosec}\left(\frac{\pi}{5}\right) \mathrm{m}$.
3. Show that the area of the regular pentagon is $\frac{196}{5} \cot \left(\frac{\pi}{5}\right) \mathrm{m}^{2} $.

Now, the farmer considers the case of a regular hexagon.
4. Using the method in part (c), show that the area of the regular hexagon is

$\frac{196}{6} \cot \left(\frac{\pi}{6}\right) \mathrm{m}^{2}$

The farmer notices that the hexagonal enclosure has a larger area than the pentagonal enclosure. He considers now the general case of an n -sided regular polygon. Let $ A_{n} $ be the area of the n -sided regular polygon with perimeter of 28 $\mathrm{~m} $.
5. Show that $A_{n}=\frac{196}{n} \cot \left(\frac{\pi}{n}\right)$ .
6. Hence, find the area of an enclosure that is a regular 14 -sided polygon with a perimeter of 28 $\mathrm{~m}$ . Give your answer correct to one decimal place.
7. 1. Evaluate $\lim _{n \rightarrow \infty} A_{n}$ .
2. Interpret the meaning of the result of part $(\mathrm{g}) (i)$.
参考答案:    

  • :
  • 总分:57分 及格:34.2分 时间:不限时
    未答题: 已答题:0 答错题:
    当前第 题,此次习题练习共有 57 道题
    本系统支持习题练习,作业与考试三大模式,作业考试自动评分,成绩排序一键导出,可设定动态变量同一试卷千人千题
    如果您对本系统感兴趣,想加入我们或者想进行任何形式的合作,请加微信 skysky1258

    浏览记录|使用帮助|手机版|切到手机版|题库网 (https://tiku.one)

    GMT+8, 2024-12-25 15:51 , Processed in 0.262281 second(s), 135 queries , Redis On.